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INTRODUCTION 

All advanced electronic systems technology is useless if it 
can not survive in the presence of its own electromagnetic 
interference as well as that imposed from without. 

There is an ever increasing dependence on microelectronic circuitry for 
system control, communications, and monitoring, many in life dependency 
situations. Specific examples are land and space based information 
transmission systems, hospital monitoring systems, and aircraft fly-by- 
wire control systems. The associated circuits are becoming smaller, faster 
and operate at decreasingly lower voltages. These factors lead to increasing 
susceptibility to self generated and external electromagnetic interferences, 
particularly those that are in the class of overvoltage transients, the ones 
with which the present effort is concerned. 

The sources of these transients are numerous. The most common source is 
a wide variety of electrostatic discharges (ESD) originating from human 
body contact and even physical circumstances encountered in electronics 
manufacturing processes. Another common source is overvoltage 
transients appearing on general power supply lines. These are most 
frequently induced by switching events or coupling to the power lines from 
external sources. Lightning is in the induced category. It is unlikely that 
any transient suppression device will survive or protect from a direct 
lightning hit; however, direct hits are extremely rare. Most damage to 
electronic circuits caused by lightning is the result of the associated 
electromagnetic pulse or associated conducted emissions. A much less 
likely threat is that of nuclear electromagnetic pulse or enemy generated 
high power microwaves, less likely, but with potentially devastating effects 
to both civilian and military systems. 

To mitigate these threats, a number of techniques are presently used. In- 
cluded are the use of special device and circuit design techniques. 
Although of definite advantage, these techniques generally do not provide 
adequate protection where substantial threats are to be encountered. Other 
methods include the use of peripheral devices such as gas discharge tubes, 
semiconductor diodes, including Zeners, and metal oxide varistors. 
Combined with good shielding practices, the combination of these methods 
can provide systems substantially hardened to transient voltages. However, 
these combined practices add cost in terms of the components needed and 
additional manufacturing processes. They also add weight, and the 
protective components can interfere with the normal operation of the 
circuits to be protected. 

To obtain a clear picture of what is desired in a Transient Voltage Surge 
Suppression (TVSS) device, it is advantageous to think in terms of two 
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regimes, the normal operational regime, where no significant overvoltages 
are present and the threat regime where a potentially damaging 
overvoltage is present. In the operational regime, we want the system to 
behave exactly as if the TVSS device were not present, we refer to this as 
system transparency. In the threat regime, we want the TVSS device to 
divert deleterious currents into paths that do not compromise system opera- 
tion. When the threat has passed, we want the TVSS device to return to its 
system transparent state and be ready to counter the next overvoltage 
threat. 

Transient voltages can be large (on the order tens of thousands of volts) and 
fast (rise times less than 10"9 second). The high voltages lead to high cur- 
rents which in turn lead to high powers. If the time duration of the tran- 
sient is long, the latter leads to high energies being transmitted to the TVSS 
device. In many TVSS devices, when a fast transient is applied, there is a 
leading edge overshoot before the final clamp voltage. The energy content of 
this overshoot can be sufficient to destroy the circuits to be protected. We 
can think of the desirable characteristics of TVSS devices in the following 
terms: In the operational regime, system transparency. In the threat 
regime, fast switching times, adequately low clamping voltages with no 
overshoots, and adequately high energy handling capabilities. Metal 
polymer varistor devices have the potential of simultaneously meeting all 
these requirements. None of the presently existing TVSS devices does. The 
Metal Polymer Varistor devices are those to which this effort is directed. 

A major advantage of the Metal Polymer Varistor (MPV) is its moldability. 
This allows substantial freedom in device geometry and reduced 
manufacturing costs. From a system standpoint, devices are more easily 
produced for specific system needs and can be directly incorporated into the 
system. A good example of this is the incorporation of MPV materials into 
the front end connectors of a communications or sensor system where the 
electrical properties of the MPV material are chosen so that no impedance 
mismatches are created. The connector then becomes the TVSS device and 
is system transparent in the operational regime. This same concept 
brought to the circuit level is exemplified by information processing circuits 
where striplines are small transmission lines. Addition of standard TVSS 
devices produces nontransparency in the operational regime; whereas, 
impedance matched MPV devices provide system transparency, and the 
question of added capacitances simply vanishes. 

Where semiconductor junction devices are used, there is an insidious 
problem that may occur in information transformation systems. The 
junction capacitances are nonlinear, leading to the generation of modula- 
tion products causing interference in multichannel systems. MPV devices 
do not have this problem. 

Members of the European Common Market are acutely aware of TVSS 
needs and are developing stringent specifications for all products imported 
to them.   American manufacturers will ultimately need to follow suit and 
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are presently moving in that direction. Development of superior TVSS 
devices in the United States will not only give a competitive edge to exported 
products but will give a competitive edge to products sold in the United 
states in competition with imported foreign goods. 

The advantages of MPV devices have been known to industry for a number 
of years. However, it appears corporate managers underestimate the need 
for understanding the basic underlying electrophysical mechanisms as a 
prerequisite for commercial success. They further fail to understand that 
the processing and measurement techniques needed to verify that un- 
derstanding may be different from what is needed in a production opera- 
tion. That has left a crucial information gap. The present project is a first 
step toward closing that gap. Our emphasis in Phase I is on basic 
principles. Those principles will be used in Phase II to optimize materials 
and devices from both a manufacturability and economic viewpoint, leading 
to higher performance TVSS devices at lower costs. 

Part I of this report is a summary of progress to date, along with 
conclusions reached and recommendations for future effort. Parts II 
through V give the technical information on which the conclusions and 
recommendations are based. 
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Section 1-1 

SUMMARY RESULTS AND CONCLUSIONS 

OF THE PHASE I EFFORT 

1-1-1 Project Objectives 
With regard to quantum tunnelling varistors, the project objectives were as 
follows: 

• Provide Quantum, Electrical, and Thermal Analyses as input 
to a finite element computer program. 

• Develop Finite Element Modelling incorporating nonlinear 
quantum effects, thermodynamics, and statistical chaotic 
behavior to provide a basis for guidance in varistor design. 

• Produce Test Sample Preparations for laboratory testing. 

• Use Laboratory Measurements for empirical verification of 
predicted results. 

• Produce varistor material formulations demonstrating the 
feasibility of quantum tunnelling varistors to meet one or more 
extant Surge Arresting Specifications where device electrical 
properties are independent of binder materials used. 

These objectives have been substantially met and are further summarized 
in the subsections to follow. The results of the project are described in 
greater detail in the body of this report. 

1-1-2  Quantum, Electrical, and Thermal Analyses 
Another objective of the effort was to produce varistor materials where the 
dominant nonlinear effects are produced by pure intermetallic quantum 
tunnelling. It is then desirable to understand this phenomenon at a 
fundamental level. To that end, previous work was summarized and 
extended with a rigorous treatment of the quantum mechanical aspects, 
including temperature, barrier reflection, and Schottky effects. It was 
predicted that temperature would not have a practical effect on pure 
quantum tunnelling devices. 

A simple expression for quantum tunnelling current densities was derived 
in the early 1900's by Nordheim and Fowler. Although the mathematics of 
quantum tunnelling are somewhat complex, we showed the form of the 
simple Nordheim-Fowler result is an excellent practical approximation, 
even when barrier reflection and Schottky effects are included.   This 
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approximation was then used as the principal nonlinearity in the finite 
element analyses to be subsequently described. 

The essential thermal aspects of varistor devices were developed. Since we 
were concentrating here on fast transients, no thermal diffusion was 
considered in the analytical treatment, representing a worst case, single 
pulse, threat scenario. However, thermal diffusion is incorporated in our 
computer programs, a feature needed in modelling the "Electrical Fast 
Transient" threat. 

A charge transport formulation was developed, leading to the conclusion 
that mean free path calculations would be sufficiently accurate. This is 
followed by an analysis of quantum states and time scales which is an 
essential ingredient for the semiclassical treatment of electron flow in our 
varistor materials. These results are then applied to bulk conduction in 
insulators, with the indication that building a reliable surge arresting 
device depending on bulk dielectric breakdown of any dielectric is highly 
unlikely and is particularly unlikely if the dielectric is amorphous, 
specifically, if it is polymeric. Thus thin inorganic insulative phases are 
indicated. 

Quantum tunnelling electrons are necessarily travelling at high speeds, 
about one hundredth the velocity of light. The relative electron densities in 
the metal and insulative phases were analyzed. Because of the high 
velocity of the tunnelling electrons, their density in the insulative phase 
need be only about eight orders of magnitude less than the density in the 
metallic phase. This significantly reduces the probability of an electron- 
lattice interaction in the insulative phase. Low probability of electron-lattice 
interaction coupled with thin insulative phases reduces the probability of 
device failure. 

A number of elementary electromagnetic solutions were derived to provide 
test cases for the accuracy of our finite element programs. 

1-1-3  Finite Element Modelling 
Finite element programs were developed to model varistor performance. 
These programs, conceived for this project, from rigorous derivation to 
C/C++ computer code, address nonlinearities resulting from quantum 
effects, thermodynamics, regenerative phenomena, and statistical chaotic 
behavior. In their capability for treating non-deterministic phenomena, 
these programs and the underlying philosophy of computation at once 
extend and combine the disciplines of continuum mechanics and chaos 
theory. It was found that this computational strength was essential in 
predicting the chaotic failure mechanisms witnessed in laboratory 
experiments. Results show, at least in a qualitative sense, excellent 
agreement between computer predictions and experimental results. 

1-2-2 
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Thorough testing of the finite element programs using relatively simple 
problems with known results showed agreement to at lease five decimal 
places. The varistor simulations were performed to include device 
geometries, applied voltages, and circuit constraints. 

When the device nonlinearity was modelled using the Nordheim-Fowler 
approximation to define the local conduction mechanism, the models failed 
to exhibit the observed dominant path failure mechanism, where a single, 
narrow filament carries the bulk of the current flow. Statistical variability 
was imposed spatially on the material to reflect real-world variation in the 
spacing among conductive particles. This material variability in 
combination with the Nordheim-Fowler nonlinearity demonstrated spatial 
fluctuations in temperature, but was again unsuccessful in predicting 
dominant path failure. 

It was found that when exponential regenerative effects were introduced 
into the material model, in combination with the Nordheim-Fowler 
approximation and statistical variability, models of dominant path 
phenomena were at last disclosed. This finding has a two-fold impact. 
First, there are apparently three criteria which must be satisfied for 
dominant path failure to occur: extreme material nonlinearity with regard 
to the relationship between local voltage gradient and apparent electrical 
conductivity, spatial variability of conductive properties in the varistor 
material, and nonlinear regenerative effects. Second, given that the 
regeneration criterion was not anticipated, there is at least one 
undetermined conduction mechanism involved. 

Using the three criteria defined above, finite element modelling was used to 
find a method to quench dominant path failure. Starting with materials 
and conditions known through the models to exhibit dominant path, 
attempts were made to eliminate this failure mechanism by making subtle 
and easily achievable material changes. These attempts were met with 
apparent success. It was found that superimposing a range of values of 
linear resistivity on the bulk conductive properties of the varistor material 
can eliminate dominant path failure. Too little linear resistivity will not 
eliminate dominant path; too much will cause severe overheating. 

This change in bulk property should be easily achievable through altered 
constructs of the conductive phase of the material, such as replacing metal 
spheres with metal-coated spheres of ceramic or glass. The goal is to 
continue to use the models to help develop a robust material having high 
resistance to dominant path failure, with correspondingly high energy 
handling capability, while still having sufficiently large tolerances 
reflecting ease and economy of manufacture. 

There were other significant findings from the finite element models. 
Curvilinear shapes apparently do not alter the dominant path situation. 
Specifically, coaxial and planar configurations will yield similar behavior. 
Additionally, for equivalent voltage gradients, reliability performance is 

1-2-3 
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substantially independent of interelectrode spacing, up to a relatively small 
threshold level. 

The finite element programs have been constructed to predict the behavior 
of non-deterministic systems. They involve a real-world randomness. With 
their use it is not possible to know precisely where and how a material will 
fail with one computer run alone. However, with results of many runs, the 
information given involves the nature of material performance and failure 
modes. By contrast, creating material with no randomness whatsoever, 
material having perfect mathematical purity as defined in traditional 
models, is clearly impossible and not reasonable to attempt. We also note 
the programs have a much broader range of application than the one for 
which they were designed here. Some of these applications are briefly 
described in Section III-6. 

Our programs have successfully modelled varistor performance and have 
shown an ability to predict chaotic failure mechanisms qualitatively. 
However, to achieve the goal of first modelling the behavior of a varistor 
before producing it in the laboratory, quantitative accuracy is essential. 
True quantitative accuracy is achievable with expansion of the finite 
element programs to full three-dimensional capability with higher order 
elements. This endeavor is achievable, but will require the further 
resources available during Phase II. 

1-1-4 Material Fabrication 
Under Integrated Sciences™ guidance, all the material fabrication was 
performed by Spectro Dynamic Systems using their proprietary processes. 
Not all of the results of the last two sections were originally fully 
appreciated. For the particle coatings, we started with organic materials. 
All the ones tested proved to be unsatisfactory. They were either too fragile 
at the thicknesses we thought we needed or failed by dominant path failure, 
displaying unacceptable energy handling capability. 

The first inorganic coating tried was silver sulfide. Unfortunately, silver 
sulfide, though possibly classed as an insulator, is a poor one. 
Incorporated in these tests was our concept for mitigating dominant path 
failure through addition of bulk resistivity. The concept remained untried 
because of the poor performance of the silver sulfide. 

We then sought a quick way of arriving at an inorganic highly insulative 
coating on any metal. Because of the known properties of aluminum oxide, 
this was a natural choice. Additionally, we had success with aluminum on 
a previous project conducted for the U. S. Army's Harry Diamond 
Laboratories. That success was repeated here, wherein samples were 
produced and successfully independently tested by Littelfuse, Inc. in 
accordance with IEC 801-2 ESD test specifications. Taking into account the 
relative energies associated with ESD and EMP, one would conclude these 

1-2-4 
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samples would also be appropriate for mitigating the EMP threat, as 
previously demonstrated in the Harry Diamond tests. 

A positive aspect of the aluminum tests is that they demonstrated the 
independence of the varistor action from any binder; there was no binder in 
the first samples tested. Subsequently, samples were prepared with 
silicone as the binder, with results similar to the ones without the binder. 
This gives an indication that we are producing devices whose electrical 
properties are independent of the binder, a major goal of this project. A 
drawback of the aluminum tests is they did not incorporate our concept for 
addition of bulk resistivity, primarily because we do not yet know how to 
economically coat aluminum on an insulative substrate. 

The next step in the direction for a complete material was to test insulative 
particles coated with nickel and overcoated with nickel oxide, which we do 
know how to do. Relatively uniform glass spheres were used as the 
substrate. The original samples showed a high degree of promise. We still 
got failures, but the off state resistances were in the GQ range, and the 
electrode failure signatures were encouraging. 

For previous dominant path failures, the electrode failure signatures 
consisted of single pits on the electrodes, indicating failure through a single 
very narrow path. For the nickel samples, the signatures looked more like 
clouds over a substantial area of the electrode surface. We believe this is the 
result of the higher degree of morphological uniformity of the glass spheres 
with which we started. 

Although there were some promising aspects with the nickel nickel-oxide 
formulation, overall results were disappointing. We then turned to silicon 
dioxide as the insulative phase. With glass as the substrate, coated with 
nickel, and overcoated with glass, consistent clamping action was obtained. 
There was an apparent leading edge overshoot, but we believe this is a test 
system artefact. Oscilloscope traces are to be found in Section V. 

1-1-4 Laboratory Measurements 
One of the things we really wanted to accomplish in this project was a clear 
demonstration of a quantum tunnelling signature. That is the 
measurement of a DC current versus voltage closely matching the form of 
the Nordheim-Fowler approximation. Instead, in all of the samples tested, 
we found an increasing current at constant voltage as a function of time 
with time constants on the order of hours. Such behavior masks any 
underlying quantum tunnelling signature that might be present. We have 
not totally given up on this matter, but it is clear the situation is more 
complex than originally envisaged. 

Although a nuisance in terms of the quantum tunnelling signature, this 
drift in resistance is of no practical consequence, since the resistances are 
always sufficiently high and the drifts are toward higher resistances. 

1-2-5 
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Section V-2 is relatively short; we refer you to it for further discussion of 
laboratory measurements. 

1-1-5 Prototype Devices 
Littelfuse, Inc. has used Integrated Sciences™ aluminum formulations 
and successfully incorporated them into one of their varistor devices. 
Testing was performed according to IEC 801-2 specifications. Definite 
clamping action was observed with zero failures. There appeared to be a 
leading edge overshoot with about a 2 ns width. As previously mentioned, it 
is believed this is mostly a test fixture artefact. 

With prolonged pulsing the clamp voltage slowly increased and nearly 
doubled after 250 pulses. Both this effect and the question of leading edge 
overshoots will be thoroughly investigated in Phase II. It is to be noted that 
increase in clamp voltage and leading edge overshoots were not observed in 
previous tests performed by the Army's Harry Diamond Laboratories on a 
formulation similar to the one used in these Littelfuse tests. It is also to be 
noted that increases in clamp voltage were not observed with the glass- 
nickel-glass formulation previously described. 

1-1-6  Conclusions 
A good start has been made toward production of new varistor materials for 
transient voltage surge suppression. Samples were prepared and tested 
according to ESD specifications with promising results, and it is highly 
likely the same type of samples will meet EMP requirements. 

A thorough analysis of pure quantum tunnelling and related phenomena is 
complete. At present, there appears there may be other conduction 
mechanisms involved. These will be investigated both theoretically and 
empirically in the Phase II effort. 

Our computer models are not yet to a quantitative level; however, they have 
proved to be completely accurate at a qualitative level and have been of 
major benefit in directing our efforts. Further, the programs are organized 
in such a way that any new conduction mechanisms can be introduced as 
"drop in" packages without modification of the overall program structure. 

An important aspect of the work performed under this contract is that we 
have gone from many failed formulations to ones showing definite promise. 
Of particular interest is that we can now coat particles with controlled 
amounts of coating thicknesses, a matter important to the production 
processes. Additionally, a formulation exhibiting consistent clamping was 
produced incorporating Integrated Sciences™ three phase approach. 

Littelfuse, Inc. has recently voiced interest in our technical developments, 
the reason some of the testing was done at their facilities.  It is highly likely 

1-2-6 
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Integrated Sciences™ and Littelfuse will enter into an alliance agreement 
during Phase II, with Littelfuse supporting the Phase III effort. Littelfuse 
has an exceptional materials science capability. This coupled with the 
talents at Spectrodynamic Systems and Integrated Sciences™ places us in 
a particularly strong position to positively move forward in the commer- 
cialization of this technology. 

1-2-7 
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RECOMMENDATIONS FOR PHASE II 

1-2-1  Primary Objective 
The general principles upon which quantum tunnelling varistors operate 
have been empirically demonstrated and their principal failure 
mechanism identified. The primary objective of Phase II shall be 
optimization, in terms of both materials and configuration. From a time 
and funding standpoint, we feel this limited goal is essential. Once the 
varistor materials are well categorized and performance characteristics 
denned, we will have a relatively clear path to commercialization in Phase 
III. However, we do expect that commercialization will commence during 
Phase II. A variety of devices can be formed from the materials we are 
developing. We will start with those that are easiest and work toward those 
that are more difficult. 

In Phase I, our results, though correct, have been principally qualitative, 
and apparently somewhat incomplete. We now need to bring them to a 
complete and quantitative level, yielding reliable design information upon 
which sound engineering can be based. Recommendations to achieve this 
are given in the following subsections. 

1-2-2   Quantum Analyses 
So far, our emphasis has been on pure intermetallic quantum tunnelling. 
We still believe this is a primary mechanism in the materials under 
development. However, results of our computer modelling and laboratory 
measurements indicate there are other active conduction mechanisms. We 
need to identify the other conduction mechanisms and include them in our 
computer programs. 

1-2-3 Electromagnetic Analyses 
At our present stage of computer modelling, we are using a continuum 
mechanical model, where we are averaging over control volumes 
containing a number of particles making up the varistor material. These 
same programs can be used to model on the basis of individual particles. 
In this way, we can get a better understanding of the interparticle 
interfacial electrodynamics. We feel this is essential in view of the potential 
for multiple conduction mechanisms. Once these mechanisms are 
understood, we would use this information as input back into the 
continuum mechanical models, in the same fashion as is currently done 
with the results from the analytical quantum analyses. 
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So far, the electrodynamics have been modelled on a quasistatic basis, and 
there is no indication this is not adequate. However, at some point in time, 
we may need to address the complete dynamic situation. 

1-2-4  Thermal Analyses 
The thermal analyses are based on the continuum mechanical models. 
There is no apparent reason that this approach needs to be modified, and 
we expect the present mode of thermal analysis, including thermal 
diffusion, will be used throughout the remainder of the program. 

1-2-5 Finite Element Modelling 
This has been a cornerstone of our approach. Even in its apparent 
presently qualitative state, it has been highly useful in guiding and 
understanding our current efforts. Aside from modifications previously 
alluded to, the major improvement needed is the expansion to three 
dimensions. 

The topology of two-space is intrinsically different from the topology of 
three-space. This difference has a definite impact on allowed field 
structures and their functional dependences. To obtain a true quantitative 
engineering tool for our present application, we must model in three-space. 
Our goal here is to be able to reliably test varistor material concepts on the 
computer prior to proving them in the laboratory. 

1-2-6 Test Sample Preparation 
The sample cells used in Phase I were crude. From a qualitative and 
feasibility standpoint they served their purpose. However, as we move to a 
more quantitative approach, improvements need to be made. For giga-Herz 
transient responses and nanosecond time frames, the sample cells will be 
configured as a part of a transmission line. This reduces the parasitics of 
the test system to acceptable levels, as was done in the Harry Diamond 
tests. 

For both high frequency work and measurements at DC, the containment of 
the varistor material must be consistent. Sample cells meeting the 
consistency requirements will be designed. 

1-2-7 Laboratory Measurements 
As with the sample cells, our laboratory measurement system is 
inadequate for reliable quantitative measurement. For fast transient 
measurements, we will acquire an oscilloscope with a higher bandwith 
than our present one, configure the system to a transmission line 
environment with the sample cells as an integral part of the transmission 
line, and acquire a pulser with variable voltage, pulse width, and duty 
cycle. 
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1-2   Recommendations for Phase II 

For DC measurements, we will continue to use a Keithley 6517 
electrometer. So we can monitor the time dependence of the resistance 
drifts previously mentioned, we will either acquire a strip chart recorder or 
institute a computer controlled data acquisition system. 

1-2-8  Commercialization 
Although our primary objective in Phase II is the development and 
characterization of commercially viable varistor materials, it is not our 
intent to totally ignore the applications aspects. We plan to remain in 
constant contact with potential users and use their guidance in 
determination of those characteristics needed in their applications. 
Through alliances with a third party or parties, we expect that some 
commercialization will take place as we are pursuing the Phase II effort. 

The Integrated Sciences™ goal is to remain in the research and 
development arena serving Government and specialty needs while 
spinning off high volume commercial applications to another party or 
parties on a deferred income basis. 
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Section II-l 

SUMMARY AND EXTENSION OF PREVIOUS RESULTS 

n-1-1  Reduction to One Dimension 
Using the technology being developed here, it was often believed the devices 
would be those where the dominant nonlinearity was provided by quantum 
tunnelling. The purpose of this chapter is to more clearly delineate the 
consequences of pushing to the quantum tunnelling limit. However, before 
taking up the main thread of our discussion, there is a matter we feel is 
worth treating in an explicit fashion. 

For a single electron, the time independent Schrödinger equation may be 
rendered in the form 

-£;VWr) + U(r)y,(r) = ey,(r) 

where e is the total energy of the electron and U is the potential energy. We 
will consider planar geometry, two pieces of metal separated by a vacuum 
gap across which is applied an electric field E. We are particularly 
interested in what happens in the vicinity of the gap and consider three 
regions with a potential profile as shown in Figure II-1-1. 

Region 1 
Metal 

Region 2 
Vacuum 

Region 3 
Metal 

Fig. II-l-l Potential profile for a planar interface between two pieces of metal separated 
by a vacuum gap g across which there is an applied electric field. The parameters eF and 0 
are respectively the Fermi energy and the work function. The distance gE is the tunnelling 
gap for an electron with energy e. We refer to this potential as the triangular wall barrier. 



n-1   Summary and Extension of Previous Results 

We have defined the tunnelling gap here, since it will be important in 
subsequent developments. 

If we considered only electrons incident normal to the surface of the metal, 
the problem would essentially reduce to a one dimensional one. However, 
as we shall see, that does not correspond to the situation in a real metal. 
This necessitates the justification of the reduction to one dimension. 

We consider coordinates with the z-axis perpendicular to the metal 
surfaces with positive direction to the right, with jc-axis perpendicularly 
into the page, and choose the y-axis so we have a right handed system. We 
take the zero of potential in Region 1. With U a function of z alone, we can 
separate the Schrodinger equation in the usual manner obtaining 

yrx dx2     yry dy2     y/z dz2      h2 L        WJ 

With some foresight, the separated equations may be cast into the form 

¥x dx2       **'     ¥y dy2 ~   *>'     ¥z dz2 +^£~U{z}i-~^ p 

The form of the x andy solutions are the same in all three regions, complex 
exponentials. The boundary conditions require the wave functions and 
their normal derivatives be continuous at the boundaries. To satisfy these 
conditions, kx and ky must remain constant throughout all three regions. 
In Region 1, the total energy is given by 

« = £(* + *♦*) 
and by the conservation of energy must also be the same in all three 
regions. We have subscripted the ^-component wave vector with its region 
since this is the only component that can change from Region 1 to Region 3. 
The 2-equation may now be put in the form 

^V,+ 2m[£_e -U(z)}¥ =^+2HL h2 

2m *       w ¥, = 0 dz2      h21       "      wjr*     dz2 

In polar coordinates with z as the polar axis, the wavevector is given by 

k = k(sin6cos(j) x + sin6sinQ y + cosd z) 

h2k2 

so    kj = kcosd    and     —L = ecos26 
2m 
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n-1   Summary and Extension of Previous Results 

The z-component Schrödinger equation then becomes 

d2w,    2m r       9rt   TT/ o -^+-£r[ecos2e-u(z)]¥2 = o 

which is the appropriate equation for a particle striking the surface with an 
incidence angle of 0. The first term in the energy bracket is just that kinetic 
energy associated with the z-component of motion. One might certainly 
guess this intuitively; however, energy is a scalar and the wave vector is a 
vector. It is not immediately obvious that the energy should separate in this 
manner. Directional effects are important in this problem, so we felt it 
worthwhile to explicitly derive this result. From what is said here, in what 
follows, we need only be concerned with the z-component of motion. For a 
single electron, we have reduced the quantum mechanical problem to one 
dimension. 

n-1-2 The Potential Step 
In this section we will address an extremely simple problem. The reason 
for doing so is twofold. First the procedure here is archetypal with respect 
to those used in more complex situations. Second, and most important, it 
illustrates a quantum effect we will later encounter. We wish to show it in 
this simple context, devoid of computational complications, so there is no 
doubt of its validity. 

From a source in Region 1, consider electrons travelling from Region 1 to 
Region 2 subject to a potential profile such as shown in Figure II-1-2. 

U(z) 

-  e 

Region 1 Region 2 

Fig. n-1-2 Step potential profile for an electron. The zero of potential is taken in Region 1. 
The total energy is e, and the potential is negative in Region 2. 

Classically the electron would pass from Region 1 to Region 2 simply 
gaining the kinetic energy imparted by the delta function force at the 
boundary.   Quantum mechanically, the situation is rather bizarre. 
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n-1   Summary and Extension of Previous Results 

In both regions,  the  solutions to the  Schrödinger equation can be 
represented in terms of complex exponentials, say 

V^ = e ,X + Ae »-»*!* y/2 = Belk*x + Ce -ik,x _^2m(e+eV) 

h 

where V is the voltage drop across the boundary and we have arbitrarily 
selected the source probability current density by setting the first coefficient 
in Yi to unity. The second coefficient in y/2 is zero since we assume no 
source in Region 2. The wave functions and their first derivatives must be 
continuous at the boundary between Regions 1 and 2. Taking the boundary 
at the origin of coordinates leads to the boundary condition matrix 

kx   k2 

1   -1 

A 

B -l 
with solution 

K2 + kj 

The general expression for the probability current density is 

T -    ih (y*V\ir- yVy*} 

and the incident, reflected and transmitted probability current densities are 

</,= 
_hkj _hkj. 

m H     m 
jr=*hi\B\2 

m 

The reflection coefficient is the ratio of the reflected probability current 
density to the incident probability current density and similarly for the 
transmission coefficient.  Respectively these are 

P = 
&2      &1 and T_   4k1k2 

{k2 + kt) 

What this says is, a negative going potential drop can, with finite 
probability, reflect an electron. That's bizarre enough. However, one would 
expect that increasing the potential would decrease the reflection, but no, 
increasing the potential increases the reflection and correspondingly 
decreases the transmission.1 For an infinite drop, the transmission is 
zero. Do we really need to be concerned about this effect? 

Electrons with which we will subsequently be concerned will have energies 
on the the order of 10 eV. Let us first ask what potential drop is required to 
reflect most of the electrons, say ninety percent of them. The ratio of the 
wave vector magnitudes in terms of the transmission coefficient may be 
expressed as 

lrrhe sum of the reflection and transmission coefficients is one. 
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n-1   Summary and Extension of Previous Results 

with corresponding voltage    V = — 
e 
V -1 

For this case, the ratio of the wave vector magnitudes is 37.97 with the 
corresponding voltage of 48 SV. After falling through this potential, the 
electron has a kinetic energy of about 2.3 x W8 ergs. Calculating the 
velocity classically, one finds 7.1 x 109 cm Is, a relativistic velocity. 
Calculating the velocity relativistically through the equation 

f 
v=cJl- 

K   ? —» + 1 
Km0C J 

where K is kinetic energy, one finds 6.97 x 109 cm/s. Thus for potentials of 
this magnitude, we are out of the range where the nonrelativistic 
Schrbdinger equation applies. 

However, we do need to ask if any sensible effect can fall within the domain 
of the Schrödinger theory. To that end, let us determine the potential drop 
required for a ten percent reflection. For this case, the ratio of the wave 
vector magnitudes is 1.925 with the corresponding voltage of 9.0 x 10~2 SV. 
After falling through this potential, the electron has a kinetic energy of 
about 4.3 x 10~n ergs. Calculating the velocity classically, one finds 3.1x10s 

cm/s, two orders of magnitude below the velocity of light. In fact, this is the 
same order of velocity for the conduction electrons in a metal. The 
transmission and reflection coefficients for a 10 eV electron are shown in 
Figure H-l-3. 

g 

u 
c o •a 

% 

Fig. II-1-3 
Calculated for a 10 eV electron 
velocity of light 

1000 
Step Potential Drop/Volts 

Linear plot of the transmission(solid)/reflection(dashed) coefficients. 
At 1000 V, the electron velocity is about two tenths the 

II-1-5 



H-l   Summary and Extension of Previous Results 

There is a substantial range where the reflection effects will be seen within 
the validity of the nonrelativistic Schrodinger equation. Additionally, we 
make note of the following. We have couched this discussion in terms of the 
most drastic potential step. The function and all of its derivatives are 
discontinuous. For a smoother potential drop, the effects will be smaller. 
At a later point we will see an example. 

The main points of this whole discussion are these. In what follows, we 
will encounter these reflection effects, especially when we use extremely 
high fields to confirm probability conservation in our equations. This takes 
us into the relativistic domain, but what we are doing in that circumstance 
is checking the mathematics, not the physics. Probability conservation is a 
purely mathematical result following from the Schrodinger equation and 
the divergence theorem regardless of any physical content. In the range of 
practical fields, we will not be in the relativistic domain. It is expected the 
reflection effects will be recognizable but not necessarily of great 
significance.  We shall see; however, forewarned is forearmed.2 

n-1-3 The Planar Free Electron Transmission Coefficient 
Considering the situation depicted in Figure II-1-1 and an electron with an 
incidence angle of 6 with respect to the plane surface between Regions 1 
and 2, the z-component Schrodinger equation takes the form 

d2w    2m r      ,       ^      _, Nl 
"7^2 +-tf[ez-\eF + <l>-eEz)\w = 0     where    ez = ecos26 

With a change of variable given by 

^=^[e2-(eF + <p-eEz)] and C = f   **   ^ 

the Schrodinger equation is reduced to 

d'yr 

2meE 

d? 
+ ty = 0 

which is the Airy equation except we have a plus where the Airy equation 
has a minus, thus if the solutions of the Airy equation are Ai(£) and Bi(£), 
our solutions will be 

ai{Z) = Ai(-£) and bi{£) = Bi(-Z) 

2When we first saw these effects in our results, we thought there must be something wrong 
with our calculations. The above discussion clarifies the matter. What we are seeing is 
real. 
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n-1   Summary and Extension of Previous Results 

Satisfaction of the boundary conditions between the three regions leads to 
the matrix equation 

-ai[$(0)]       -bi[S(°)] 0 
ik,   jai'$[S(0)]   jbi'[S(0)]        0 

0 

0 

nik38 ai[S(g)]        bi[S(g)] 

laiftig)]    jbi\${g)]   -ik3e*>* 

\A' 
~-l 

B 

C 
= 

ikj 

0 
[D_ 0 

where 

which gives 
kl~   ft 

and    kn 4TL 
ft 

, _ ^2mecos26 
kl ft 

and    K = 
■^2m(ecos2e+eEg) 

The probability current densities in Regions 1 and 3 are given by 

'pi 
= nkl 

m 
and 

m 

This leads to a transmission coefficient given by 

T{e,e,E) = ^\D(ecos2e,Ef 

where in this last expression we have explicitly shown the independent 
variables. This is the z-component transmission coefficient for an electron 
of total energy e striking the surface with an incidence angle of d in the 
presence of an electric field E. 

n-1-4  The Three Tunnelling Regimes 
We are now in a position to qualitatively describe tunnelling behavior in 
varistor applications. We will recognize three regimes we designate as 
cutoff, tunnelling, and reflection. They are best described in terms of the 
potential functions of Figures II-1-4 to II-1-6 on the following pages. 
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n-1   Summary and Extension of Previous Results 

U(z) 

I -* z 

$ 

-1 
£p 

e 

Region 1 
Metal 

g 

Region 2 
Vacuum 

Region 3 
Metal 

Fig. n-1-4 The Cutoff Regime. The tunneling gap for all the electrons is the full distance 
between the metal surfaces. The corresponding transmission coefficient is so small that 
negligible current flows. Tunnelling is essentially cut off. Note however that some finite 
current will always flow since the potential in Region 3 is everywhere less than in Region 

Region 1 

Metal 
Region 2 

Vacuum 
Region 3 

Metal 

Fig. n-1-5 The Tunnelling Regime. The tunnelling gap has been reduced for some of the 
electrons. Under these conditions, substantial currents can flow. However in this regime 
the tunnelling gap is not reduced for all of the electrons; the electric potential does not cross 
zero, the potential of Region 1. 

II-1-8 



n-1   Summary and Extension of Previous Results 

Region 1 
Metal 

Region 2 
Vacuum 

Fig. n-l-6 The Reflection Regime. The electric potential has now crossed zero. The 
tunnelling gap is reduced for all electrons. Decreasing the electric potential even further, 
the potential profile as seen by the electrons in Region 1 approaches that of the step potential 
with the initial peak becoming less and less significant. We would expect, and we shall 
find, the behavior becomes that of the step profile with its attendant reflection 
characteristics. This is the reason we refer to this as the reflection regime. 

Summarizing the definitions, we are in the cutoff regime when the electric 
potential is always above the Fermi energy, in the tunnelling regime when 
the electric potential crosses the Fermi energy but does not cross zero, and 
in the reflection regime when the electric potential crosses zero. 

II-1-5 Transmission Coefficient Models 
In classical mechanics, both the free particle and the particle in a constant 
force field are trivial. In quantum mechanics, the situation is distinctly 
different. For the free particle we first have uncertainty, but then too, we 
have the nasty business of wave packet spreading. For the particle in a 
constant force field we have both of these features, and as we have seen, 
solution of the problem involves Bessel functions. At the beginning of our 
efforts, so as to not get enmired in the mathematics, we elected to look at a 
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n-1   Summary and Extension of Previous Results 

number of simple models. In terms of decreasing simplicity, they were: the 
symmetric wall barrier, the rectangular wall barrier, and finally the 
triangular wall barrier. Using an intermetallic gap of 100 Ä and the 
parameters for copper, we will discuss the three models in turn. 

Symmetric Wall Barrier 
Our initial thoughts were that quantum tunnelling would be dominated by 
the width of the tunnelling gap, so we elected to investigate a potential 
function as shown in Figure II-1-7 where the tunnelling gap is adjusted to 
be equal to to the tunnelling gap in an applied electric field. 

U(z) 

Fig. II-1-7   The symmetric wall barrier potential. 

It is a simple model with an easy solution, often given as a sophomore or 
junior level physics exercise. Results for the transmission coefficient as a 
function of gap field are shown in Figure II-1-8. 

| 
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I    0.2 

Symmetric Wall Barrier 

Gap Field/V/cm xl09 

Fig. II-1-8    Linear plot of the transmission(solid)/reflection(dashed) coefficients for the 
symmetric wall barrier using the parameters for copper and an intermetallic gap of 100 A. 
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n-1   Summary and Extension of Previous Results 

No real surprises here. As the field increases, the transmission coefficient 
monotonically increases to unity. From the linear plot, the degree of 
nonlinearity can not be appreciated. In Figure II-1-9 we show the same 
data plotted log-log. 
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Fig. II-1-9    Log-log  plot of the transmission(solid)/reflection(dashed) coefficients for the 
symmetric wall barrier using the parameters for copper and an intermetallic gap of 100 A. 

Rectangular Wall Barrier 
Our next approximation was the rectangular wall barrier shown in Figure 
II-1-10 with transmission and reflection coefficients shown in Figures II-1- 
11 and II-1-12. 

U(z) 

& 

Fig. II-1-10   The rectangular wall barrier potential. 

H-l-11 



n-1   Summary and Extension of Previous Results 

Rectangular Wall Barrier 
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Fig. n-1-11    Linear plot of the  transmission(solid)/reflection(dashed) coefficients for the 
rectangular wall barrier using the parameters for copper and an intermetallic gap of 100 
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Fig. II-1-12 Log-log plot of the transmission(solid)/reflection(dashed) coefficients for the 
rectangular wall barrier using the parameters for copper and an intermetallic gap of 100 
A. 
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It was relatively easy to modify the program for the symmetric wall barrier 
to accommodate this one and we still avoided the Bessel functions. A 
solution in terms of exponentials was obtained. Here we have our first 
evidence of the reflection effects. For low field values, the symmetric and 
rectangular results are in fairly good agreement. We were expecting an 
increase in the computed transmission coefficient in the high field regions 
by including the added potential drop. The opposite occurs; for sufficiently 
high fields, the transmission decreases as the field increases, and the 
maximum is considerably below unity. 

Triangular Wall Barrier 
The potential for the triangular wall barrier was previously shown as 
Figure II-1-1. The corresponding transmission and reflection coefficients 
are those of Figures H-l-13 and II-1-14. 

Triangular Wall Barrier 

12 3 4 5 

GapField/V/cm xl09 

Fig. n-1-13    Linear  plot of the transmission(solid)/reflection(dashed) coefficients for the 
triangular wall barrier using the parameters for copper and an intermetallic gap of 100 A. 
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Fig. II-1-14    Log-log plot of the transmission(solid)/reflection(dashed) coefficients for the 
triangular wall barrier using the parameters for copper and an intermetallic gap of 100 Ä. 
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The first thing we observe is that in comparison to the rectangular wall 
barrier, the transmission has increased and the degree of nonlinearity has 
decreased, the effect of getting rid of one discontinuity. The potential 
function is now continuous although all its derivatives are still 
discontinuous. Removal of the functional discontinuity has also lessened 
the reflection effects. Where are they? They are at higher fields as shown 
in Figure II-1-15. 
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Fig. n-1-15 Linear plot of the transmission(solid)/reflection(dashed) coefficients for the 
triangular wall barrier using the parameters for copper and an intermetallic gap of 100 A. 
The solid curve is the transmission coefficient. The lowest field shown is 109 VIcm. 

It should be noted that in all the plots displayed, the transmission and 
reflection coefficients are independently calculated. Their sum being unity 
serves as a check on the correctness of the calculations but, of course says 
nothing about the validity of the model. Of the three models we have just 
described, the triangular is the most realistic, but because of the 
discontinuities still remaining in the derivatives of the potential function, 
we expect predicted transmission coefficients will generally be 
underestimated. However, we also expect the general trends will be 
adequately represented by this model and will serve as a guide in our 
further efforts. With that said, it is now time to turn our attention to the 
electrical current densities. 

II-1-6 The Fundamental Tunnelling Integral, Quasiclassical Derivation 
For the present, we will continue to use planar geometry for our analysis. 
It does not correspond to the geometry of our materials, but will give insight 
as to the important parameters involved and their interrelations. A 
number of approximations were carried out in a previous effort. We now 
wish to refine them and their associated numerical results and develop a 
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design procedure for quantum tunnelling devices. The first step is to give 
an accurate derivation of the fundamental tunnelling equation. In the 
present section, we will give a quasiclassical derivation. The advantage of 
the quasiclassical approach is that it gives a more pictorial view. 

The tunnelling current density is dependent upon the tunnelling 
transmission coefficient, the number of electrons per unit time striking the 
tunnelling barrier, and their energies and directions. We will use the free 
electron model of electrons in a metal. In that case, the energy and speed of 
the electrons are related through the classical expression for kinetic 
energy. We will start with the directional characteristics and consider a 
unit volume in the physical space of the electrons. We next translate all the 
velocity vectors of N electrons to a common origin, inscribe them in a unit 
radius sphere, and extend the vectors to the surface of the sphere. The 
directions of the velocities are uniformly distributed so the intersections of 
the vector extensions with the unit sphere have a surface density ofNI4iz. 
We use spherical coordinates to define direction. The number of electrons 
in a 00-cone is then given by 

N dNe* =-7-sind d6 d<j> 
4% 

Now considering a parallepiped of electrons with base dA on the tunnelling 
barrier and axis making an angle 0 with the 2-axis, if v x dt is the length of 
the axis, the volume of the parallepiped is dAxvxdt. All the electrons 
contained in the volume will strike the surface in time dt. The number of 
00u-electrons striking the surface per unit time and per unit area will be 

( dN \       dN n  .   n Jn J -77-r     =—-JLvcos9sin6d6d(b 
ydAdt)^    4K 

where dNv is the number of electrons with velocities between v and v + dv. 
In terms of the velocity density n, we can write 

dNu = n(v)dv = (D(e)f(e)de 

where fie) is the Fermi-Dirac distribution function and CD is the energy 
density of states which for the free electron model is given by [13] 

^e^~t?\W]   ^     andwith 

For the present, we will take the low temperature approximation where /(e) 
is unity up to the Fermi energy and zero beyond.3 We then have 

3Even at room temperature, this is not a bad approximation. We will explore this further in 
Section II-2. 

111-15 



' dN 
dAdt *£    2«3*3 

n-l   Summary and Extension of Previous Results 

m 
ecosOsinOdddty 

Multiplying this by the electronic charge and the transmission coefficient 
gives the differential of current density. Completing the integration over <p, 
we have the fundamental tunnelling integral 

de \ddeT{ecos2e,E)cosdsind 
o      Jo 

n-1-7  The Fundamental Tunnelling Integral, Quantum Derivation 
In this section, all variables will be those associated with a purely quantum 
mechanical approach. Let us return to our expression for the tunnelling 
probability current density 

m 

In Region 3, the kinetic energy is given by 

£;{k2
x+k°y+k!) = e + eEg = ^(k2

x+k
2

y+k?) + eEg 

%2k2
3    h

2k?     _, ,„     T, ,     pm(ecos2d+eEg) 
-T-JL = -7-

1- + eEg = ecos20 + eEg    or    £. = -* i tL 
2m     2m 3 ft 

Substituting for k3, multiplying by the electronic charge, and showing the 
independent variables explicitly we have for the 2-component electric 
current density in Region 3 

J3z{e,d,E) = — pm(ecos2d + eEg) \D{e,6,Ef 

that is, the current density for a single electron with an incidence angle 6. 

Let us now consider dNE electrons in a unit volume of the metal with 
energies in a de interval. The directions of their wave vectors will be 
randomly distributed. In a fashion similar to what was done in the last 
section, we can visualize this situation by translating all the wave vectors to 
a common origin and inscribing them within a sphere of unit radius. The 
vector ray intersections with the surface of the sphere will be uniformly 
distributed with a surface density equal to 1/4 n. The number of vectors 
within a 00 solid angle will be 

II-1-16 



n-1   Summary and Extension of Previous Results 

dN dNw = —r^sin 0 de d<p 4% 

Integrating this with respect to 0 gives the number of electrons in the de 
interval with incidence angle 0. 

dN 
dNeE = ^sin0d9 

If we now multiply this number by the current density for a single electron, 
we will have the differential current density for all the Be electrons. 

d2J{£,e,E) = —^sineddJ2m(ecos20+eEg)\D{e,e,E)\2 

ffv        £ 

For dNE we take the free electron energy density of states previously given by 

w v      1  (2m\m r 

We then obtain 

d2J{e,B,E) = -^-3 je(ecos2e + eEg)sin8 \D(e,6,E)f'dBde 

Integrating this with respect to angle and energy gives the total current 
density in Region 3. 

J»eF    »«12 

de   de sin 6 ^je (e cos2 6 + eEg) \D(ecos2e,E) 
o     Jo 

This is the fundamental tunnelling integral.   The constant in front of the 
integral has the value 

Kf = 3.174x10 io _A 1_ 
cm2 (eVf 

The interested reader may readily verify that this result is identical to the 
one obtained from the quasiclassical derivation, a cross check on both 
derivations. 

As a further check we have evaluated these integrals at field strengths 
where the transmitted and reflected currents are of the same order of 
magnitude and confirmed that charge conservation is maintained in our 
formulation. In the form of the last section, if we set the transmission 
coefficient to unity, the transmitted current will be equal to the incident 
current. In this case the integrations are readily performed giving a value 
for the incident current density of 
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j _ eme2
F 

i~4n2h3 

For copper, the incident current density is 3.989 x 1011 A/cm2. It is the 
magnitude of this current density that allows significant currents to flow 
even in the face of small transmission coefficients. This magnitude results 
from the fact that there are a large number of electrons, and those at the 
Fermi energy are moving at about one hundredth the velocity of light. 

n-1-8 Evaluation of the Tunnelling Integral 
Since we wish to cover a rather large range of various parameters and to 
include all significant physical effects, our approach will be numerical. It 
is then desirable to know the general character of the integrand. Unsealed 
mesh plots are shown in Figures 16 and 17 with quantitative data in 
Figures 18 and 19. 

TunIntCu5, gap=100, E=4.5E+07, J=3.4649E+02 

I 

Incidence Angle 

Fig. II-1-16     Unsealed mesh plot of the tunnelling integral integrand.   The origin of 
coordinates is at the upper left corner with energy and angle increasing from that point. 
Parameters used are those for copper. 

TunlntCuS, gap=100, E=4.5E+07, J=3.4649E+02 

1 

Incident Energy 

Fig. II-1-17     Unsealed mesh plot of the tunnelling integral integrand.   The origin of 
coordinates is at the upper left corner with energy and angle increasing from that point. 
Parameters used are those for copper. 
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xlO-7 TunIntCu5, gap=100, E=4.5E+7, J=3.46E+02 
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Incidence Angle/pi 

Fig. II-1-18    Plots of the integrand as a function of incidence angle for various energies. 
The largest values are for the Fermi energy. Parameters used are those for copper. 

xlO-8 TunIntCu5, gap=100, E=4.5E+7, J=3.46E+02 
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Fig. II-1-19   Integrand remaining after the angle integral is complete. 
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We observe a fair amount of structure for the total integrand, but the curves 
are relatively smooth; thus, we did not institute a sophisticated integration 
routine and simply used the trapezoidal rule over a 51 x 51 grid. A number 
of checks were performed to test the accuracy of the calculations. As 
previously described, we checked the transmission/reflection balance. To 
check the accuracy of the Airy functions, we had recourse to an identity [15] 

a*(}±bi{i)-bH(}jLaHe).-l 

The identity was always satisfied to within five place accuracy throughout 
the domain of the variables we are using. For the complete tunnelling 
integral, we checked conservation of charge and found the ratio of the sum 
of the transmitted and reflected current densities divided by the incident 
current density to be 1.0005. This represents sufficient accuracy for our 
present purposes, general trends and semiquantitative results. In the final 
analysis, it is empirical data that will be used. 

n-1-9 The Nordheim-Fowler Approximation 
An approximating function for the current density is afforded in an early 
paper [12] of Nordheim and Fowler (NF). They find an expression in the 
form 

I = -£ V*l F2e^z'"/3F        -th 8K2m_2m 
2Kh{X + p)z112 h2   ~ h2 

e is the electronic charge, p is the Fermi energy and % is the work function. 
Evaluating the aggregates of fundamental constants they write 

I = 6.2x 10-*—V—— F2e-2.i*io'x»°/F 

or somewhat more legibly 

..1/2 

1 = 6.2* 10~*{x + ß)xl,2 F2exp(-2.1 x 10
?
X

3/2
/F) 

where the current density is expressed in terms of Al'cm2 and the Fermi 
energy and work function are in eV. Unfortunately, in the copy of the paper 
we have, we can not read what is supposed to take the place of the question 
mark in the exponential above. In addition, NF tends to switch the 
meaning of F between force and electric field. 

If we assume in the first of the above equations that F is force, then the 
equation is dimensionally correct. In the second two equations, if we 
assume F is electric field, for the first constant we find 6.118 x lO-6 AIV, 
close enough. However using the same procedure, for the constant in the 
exponent, we find 6.792 x 107 l/(cm V112), not so close, and this occurs in the 
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most sensitive part of the relation.4 Evaluating these constants by setting 
the gap in the fundamental tunnelling integral to one centimeter, we find 
5.55 x 10s A/Vand 6.77 x 1071/cm V3'2. 

We believe the NF result with parameters 6.118 x KT6 A/V and 6.792 x 107 

ll{cm V1'2) is correct and the departure from our computed results stems 
from a difference in the assumed potential function. NF considers only one 
boundary, that between our Regions 1 and 2, between the first metal and the 
vacuum. They then assume a linear potential throughout Region 2 with 
Region 2 extending to infinity, with no Region 3. Since we will have 
reflections at the boundary between Regions 2 and 3, we would expect our 
results to be below those of NF, which is what we observe. 

Our preliminary conclusions are: 

Reflection effects play a noticeable role in the behavior of 
quantum tunnelling varistor devices. 

The reflection effects will be most significant for small 
intermetallic gap widths. 

For our present purposes, our calculations are sufficiently 
accurate. 

Over restricted domains, a relation of the form 

JNF(E) = Km j^f^T* E2exp{-aNF<!>3/2/E) 

will serve as an adequate representation of quantum 
tunnelling varistor current densities where the NF- 
parameters KNF and ocNF are determined from the fundamental 
tunnelling integral, which includes reflection effects.5 

The inversion equations for the NF parameters are 

aNF~ 

f 
<P3'2 1—1 

*--i^^(«^*/^ LJVF' 
J2 ^F 

4We suspect NF may have erroneously dropped the factor of three in the exponent which 
would have given them the factor 2.037 x 10s. 
5In our future work, we will continually monitor this assumption. 

II-1-21 



n-1   Summary and Extension of Previous Results 

As previously stated, in the final analysis, the NF-parameters will be 
determined empirically. Our major concern here is to recognize the factors 
affecting them and to semiquantitatively assess the effects of their 
variation. 

In some of our work, we will not wish to explicitly carry the work function 
and Fermi energy. We express the NF approximation in the form 

JNF(E) = KEE
2e-^E 

and identifying the new parameters as 

£l/2 
KE = KNF (0+^)^1/2 aild        ßß = aNF0m 

for copper, we have 

KE = 6.4x 10~7 A/V2     and    ßE = 6.8x 108 V/cm 

n-1-10 Evaluation of the Schottky Effect 
When an electron is removed from a metallic surface, it leaves behind its 
image charge. In the presence of an applied electric potential, the total 
potential is the sum of the applied potential and the Coulomb potential of the 
electron and its image. The potential energy of the electron and its image is 
given by 

'*   e2    .        e2 

ax =  u{*nL<hd*+i \2xf~"   J~(2xf  "      2x 

The total potential energy then takes the form 

e2 

U{x) = <j)-eEx- — 

where we have taken the origin of coordinates at the metal surface and the 
zero of potential at the Fermi energy. 

With some rather heavy handed mathematics, Nordheim addresses this 
problem in the August issue of the same journal previously cited. 
Following a lead given by Solymar and Walsh [16],6 we can avoid the 
mathematics by noting that we have previously shown the symmetric wall 
barrier gives a very good approximation to the correct functional form for 
the current density. 

6However, note there is the ubiquitous factor of two error in Solymar and Walsh's potential 
function which we have here corrected. 
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J{E) = J0e-qw     with 42m AU 

where w is the width of the barrier and AU is the height of the barrier above 
the tunnelling electron energy. For our present case, we take the 
symmetric wall barrier with a height equal to the maximum of U and a 
width given by the coordinate where U crosses the zero of potential, with a 
slight approximation for w, for the field strengths of interest, these two are 
given by 

w=   ^ eE 
A= and AU = <p-(2e3E) w 

The current density then takes the form 

J(E) = J0exp 
<t>^2mAU 

efiE 

and we wish to compare this to the NF approximation. The matter of 
interest here is the effect on the change of the exponential function, so for 
the sake of comparison, we will take J0 to be the same in both cases. The 
result is shown in Figure II-1-20. 
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Fig. II-1-20   Comparison of results with and without the Schottky effect. The solid curve is 
without Schottky and the dashed with Schottky. 

In their article, NF claimed the Schottky effect would be small for high field 
emission, one reason we have not given it much attention until the present. 
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The above result indicates to the contrary. However, we observe an 
important result. Although the magnitudes of the current densities are 
rather drastically altered, the form of the function is not. This means, with 
proper adjustment of parameters, we can still use the NF function over 
limited ranges of fields for design purposes. In general, we will usually be 
interested in the current density variation with a two-to-one variation of 
applied potential. 

n-1-11  Varistor Volt-Ampere Characteristic 
We now move from the physics to the engineering. Varistors are 
electrically described by their volt-ampere characteristic. If n is the 
number of intermetallic gaps from one electrode to another and g is the 
width of the gaps, in terms of the voltage across the electrodes, the gap field 
will be given by7 

ng 

Where A is the area of the electrodes, substituting into the NF 
approximation, we have for the varistor current in terms of voltage 

I = AKE\ — 
ng 

e-ngßE/V 

We will also write this as 

( i \2 

I = KvV
2e-ßv/v     with    KV = AKE — 

\ng) 
and    ßv = ngßt 

The work functions of the metals can be varied by the nature of the coatings 
we put on them. For a given metallic formulation8, our only other degrees 
of freedom are the electrode area A and the «^-product. 

II-1-12  Primary Electrical Varistor Specifications 
We will recognize two regimes: the operational regime and the threat 
regime. The operational regime is where there are no high level spurious 
voltages present. The threat regime is where there are high level spurious 
voltages present. There are a number of specifications applied to varistor 
devices; however, in this section, we will only be concerned with the 
primary electrical specifications.   They are: reverse standoff voltage, VR; 

'We assume here all the gaps are the same. Since we will be dealing with coated particles 
in contact with one another, this is not likely a bad assumption. 
8Henceforward when we speak of a metal, we shall mean elemental metal and its 
associated coating. 
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maximum reverse leakage, IR\ maximum peak current, Ip; and maximum 
clamping voltage, Vc.    We will define these in turn. 

Reverse standoff voltage. Vr 

Maximum voltage to appear in the circuit in the operational regime. 

Reverse leakage. IR 

Maximum allowed current through the varistor at the reverse standoff 
voltage. 

Maximum peak current. Ip 

Maximum current through the varistor in the threat regime. 

Maximum clamping voltage. Vc 

Maximum voltage across the varistor at maximum peak current. 

For a quantum tunnelling varistor, these specifications uniquely determine 
the bounds on Kv and p\ through the equations 

ßv = 
( 1 \ 

V     V 

-1        _    /_. \2 

Inf- 'v.v 
yVcj 

and     K =IB.PPV/VR _JP_ ßv/vc ana     JYV - ^2 e        -       e 
R C 

where the last equation can serve as a check on the calculation. The ng- 
product is then given by 

ß K 
ng = ^-     and the electrode area by    A = (ng)2—^ 

As an example, we consider the following set of primary specifications: 

VR = 180V, IR = 10fjA, IP = 180A, VC = 335V 

For the metal, we will use copper with a coating that does not alter its work 
function. We then find 

ßv = 6.02xl03V/cm, Kv = LOO x 10s A/V2, ng = 8.8 xW« cm, A = 13.4 cm2 

The resultant volt-ampere characteristic is shown in Figures II-1-21 and 
II-1-22. 

The specification given here was taken from a commercial varistor catalog. 
It is interesting to note that the dimensions for our example are about the 
same as for the commercial device. If we used a material with a gap width 
of 100 A, the required number of gaps would be about nine. 
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Fig. II-1-21   Linear plot of the volt-ampere characteristic for the varistor of our example. 
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Fig. II-1-22   Semilog plot of the volt-ampere characteristic for the varistor of our example. 

II-1-13  Elementary Thermal Considerations 
Among other factors, the survivability of a quantum tunnelling device is 
dependent upon its thermal capacity and the details of the threat regime 
scenario. In this section, we will take a highly simplified view and 
consider a single pulse threat regime. We will assume the pulse is 
sufficiently short so there is insignificant thermal diffusion before the 
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varistor reaches its maximum temperature. Saying it a different way, all 
the pulse energy is instantaneously converted to thermal energy with a 
consequent rise in temperature. It is to be noted that for a single pulse, this 
is a worst case scenario. 

In quantum tunnelling, the majority of the the energy will be delivered to 
the metallic phase. With this as an additional simplifying assumption, the 
rise in temperature will be given by 

C 

where Q is the pulse energy and C is the heat capacity of the metallic phase. 
Another important varistor specification is its peak pulse power defined as 
follows. 

Peak Putee Power. Pr 

The power delivered at the clamp voltage with peak current, numerically, 
the product of the clamp voltage and the peak current. 

The energy in a pulse may be given by the product of its peak pulse power 
and the pulse equivalent time teq. The equivalent time is the duration of a 
rectangular pulse delivering the same energy as a given pulse [14]. Using 
these concepts, the temperature rise may be written as 

cpVm 

where c is the metallic specific heat, p is the density, and Vm the volume. 
The area was previously determined by the electrical specifications. What 
the last equation determines is the minimum thickness to meet the thermal 
requirements. For a specified temperature rise, this thickness is given by 

AcpAT "mm 

This, in turn, determines the minimum diameter of particles to be used. 

fj       _ ''min 
"'min ~ n 

For our example, the specified equivalent time was about 40 us which gives 
a total energy of 2.41 J. Using the parameters for copper with a 
temperature rise of 100 C, we find tmin = 340 pm and dmin = 37.8 \im. For 
experimental convenience, our test samples will have a thickness of 2 mm. 
For this example, this would then require particles with diameters of 222 
fim. 
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II-1-14  Critique of the Preceding Analyses 
In the preceding discussion, we have made two drastic assumptions. The 
first is that there is no significant interaction between the tunnelling 
electrons and the insulative coatings. For sufficiently thin coatings, that 
may well be true, but consideration of this matter will be a major concern of 
further efforts in this project. The questions are, what are the interactions 
and to what use can they be put? 

The second drastic assumption is the one of planar geometry and the 
subsequent reduction to one dimension; whereas, the tunnelling gaps in 
our materials will be between spherical particles. Our presumption is that 
though the detailed results may vary, the overall functional dependences 
and orders of magnitude will be similar. For spherical particles, there will 
be a field enhancement by a factor not exceeding three that is not accounted 
for in our analyses. We have assumed a discontinuous potential function. 
Because of reflection effects, our estimates of the planar current densities 
will be lower than for a more realistic potential function. 

We consistently used the free electron model for electrons in a metal for 
which the Fermi surface is strictly spherical. This allows us to perform 
our integrations in spherical coordinates with no functional dependences 
in the upper limit of the energy integral. This is one of the reasons we have 
used copper in our examples, because the Fermi surface of copper is nearly 
spherical. It is not likely copper will be a metal of choice. 

Other metals have more complex Fermi surfaces especially those with 
overlapping bands, ones with an even number of electrons [16]. However, 
the departure from sphericity stems from the density of states function 
penetrating the surfaces of the first Brillouin zone. Although this leads to 
profound effects in phenomena such as cyclotron resonances, the 
penetrations are relatively small and will not greatly affect bulk transport 
properties, the ones with which we are dealing here. Because of this, the 
free electron assumption is likely to represent a small contribution to our 
overall departures from a more realistic situation. 

The volumes, areas, and thicknesses computed in the previous two sections 
should be considered as equivalent volumes, areas, and thicknesses, since 
planar geometry was tacitly assumed. We also assumed the particles were 
stacked directly above one another and did not account for the volumetric 
packing fraction, about seventy-four percent for close packing. 

Our present tunnelling model is certainly crude. However, we regard 
empirical results as an essential ingredient for guidance in its refinement, 
a major goal of the current effort, to be reported in subsequent sections. 

One of the recurrent themes appearing during the execution of these tasks 
is the importance of paying attention to the relative magnitudes of various 
quantities that occur in our analyses.    It is frequently these relative 
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magnitudes that allow certain approximations and dictates the direction 
the analysis should take. A great deal of care must be exercised, because 
the magnitudes with which we are dealing are so far removed from our 
daily experiences. What seems to us in our everyday lives to be a large 
quantity may be quite ordinary on an atomic scale. We would like to 
illustrate this point in a somewhat amusing way. 

Consider half a gallon of water. Say we send all the nuclei from that 
sample to Mr. Alston in California and all the electrons to Mr. Scott in 
Virginia. We invite all who read this to calculate the force of attraction at 
that distance between the nuclei in California and the electrons in 
Virginia.  You may wish to express your final answer in units of kilotons. 

In the work presented so far, we have mainly dealt in terms of static and 
steady state concepts. The associated quantum mechanical analyses have 
lead to a substantial amount of insight, but our ultimate aim is the 
treatment of transient phenomena. Thus we must, at some point, face up 
to the demands of addressing the time dependent equations. Further, we 
have substantially ignored the insulating phases in our composite system. 
The following sections are a first effort to extend the previous efforts to cover 
these aspects. 
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Section II-2 

ANALYSIS OF TEMPERATÜRE DEPENDENCE 

II-2-1 
A major advantage of quantum tunnelling devices is their near 
independence from temperature effects. To see why this is so, we consider 
the fundamental tunnelling integral derived in Section II-1.  There, we had 

J.£F       »n/2 

de \deeT{ecos2e,E)cosdsine 
o     Jo 

where we took the low temperature form for the Fermi-Dirac distribution 
function which, in general, is given by 

/(*) = — 
1 + exp 

' e-eF 

ykBT j 

where T is the absolute Kelvin temperature.1 The exact form for the 
fundamental tunnelling integral is then 

J»°° MK/2 

de \d0 ef{e)T(ecos2e,E)cosOsinO 
o      Jo 

which we choose to write in the form 

J{E) = -^\f{e)I0(e,E)de    with    I0{e.E)=\ eT(ecos2e,E)cos6sindde 

where /„ is the zero temperature energy integrand with the angles 
integrated out. Using the formulation for the triangular wall barrier and 
evaluating this function for an acceptable number of points to perform the 
energy integration would entail a rather large amount of computing time. 
To obtain an overall picture of what happens, we will resort to the 
symmetric wall barrier and match I0 computed from the symmetric wall 
barrier to one computed from the triangular wall barrier. The result is 
surprisingly good and is shown in Figure II-2-1. 

1Not to be confused with the transmission coefficient.   The distinction is made from 
context. 
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Fig. n-2-1 The solid curve represents the values of J0 as computed from the functional form 
of the symmetric wall barrier and matched to the points shown, computed from the 
triangular wall barrier. 

The other factor appearing in the energy integral for J is the Fermi 
function shown for various temperatures in Figure II-2-2. 
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Fig. II-2-2   The temperatures in degrees Kelvin are: solid, 4; dashed, 295; dash dot, 395- 
dot, 495. 
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The rest of the story is told by the following figures and their captions. 
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Fig. II-2-3 The effect of the Fermi function on the tunnelling integral integrand for 
various temperatures. The temperatures in degrees Kelvin are: solid, 4; dashed, 295; dash 
dot, 395; dot, 495. 
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Fig. n-2-4 Resultant current density after the energy integration. On this scale, there is 
little observed temperature effect. The temperatures in degrees Kelvin are: solid, 4; 
dashed, 295; dash dot, 395; dot, 495. 
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Fig. II-2-5    Semilog plot of the previous result.  The temperatures in degrees Kelvin are: 
solid, 4; dashed, 295; dash dot, 395; dot, 495. 
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Fig. II-2-6    Expansion at low fields.   The temperatures in degrees Kelvin are: solid, 4; 
dashed, 295; dash dot, 395; dot, 495. 
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Fig. II-2-7 Expansion at high fields. The temperatures in degrees Kelvin are: solid, 4; 
dashed, 295; dash dot, 395; dot, 495. 

We note that 295 °K is essentially room temperature, 395 °K is the boiling 
point of water, and 495 °K is above the melting point of lead. What we 
observe is, there is little practical temperature dependence predicted. 

Although the above presentation gives an excellent qualitative picture of 
what is happening, it is quantitatively inaccurate except in the field range 
where I0 was matched. The predicted current densities for low fields are 
above the exact calculations and those for high fields are below the exact 
calculations. However, the matter in which we are mainly interested here 
is the current density spreads as a function of temperature. These have 
been calculated using the more exact triangular wall barrier with the 
results shown in Table II-2. 

,E,T 4 195 295 395 495 

2.5 J 5.56x10^ 6.43xW4 6.84 xlO-4 7.42x10-* 8.19 xlO-4 

% 21 6.2 0 8.1 18 
4.0 J 38.0 42.4 43.4 44.8 46.4 

% 13 2.3 0 3.2 6.7 
5.5 J 7.64x10° 8.19 x10s 8.27xlO3 8.38 x10s 8.52x10 xlO3 

% 7.92 0.97 0 1.3 1.66 

Table II-2 The current densities, J, are in AI cm2, the temperatures, T, are in degrees 
Kelvin and the field strengths, E, in VI cm x 107. The percentages are changes with respect 
to room temperature. 
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The percentage changes with respect to temperature are small and 
decrease as the fields are increased. We conclude that this conduction 
mechanism does not significantly contribute to any tendency toward 
thermal runaway. Further, the smallness of the changes is such that 
devices with these characteristics would be virtually temperature 
independent from a practical standpoint. 
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CHARGE TRANSPORT FORMULATION 

n-3-1 Some Properties of the Fermi-Dirac Distribution Function 
For present and later purposes, it is worthwhile to briefly review some of 
the properties of the Fermi-Dirac distribution function which is a central 
result of equilibrium quantum statistical mechanics. For a gas of weakly 
interacting particles obeying the Pauli exclusion principle, it states that in 
an ensemble of systems, the average number of particles in quantum state r 
with energy er is given by the function 

/w- 
1 + exp 

Where fi is the thermodynamic chemical potential, kB is Boltzmann's 
constant, and T is the absolute temperature. For electrons in a metal, the 
label r includes the wave number k and the spin quantum number ± s. The 
chemical potential is implicitly defined by the requirement that the sum 
over all states of the distribution function must equal the total number of 
particles in the system, symbolically 

5>> N 

If this sum is approximated by an integral with respect to energy, the 
density of states must be included. 

\<D(e)f(e)de = N 
Jo 

For electrons in solids, the chemical potential is called the Fermi energy. 

With T equal to zero, if er is greater than ß, the function is unity. If er is 
less than ß, the function is zero. In this case, the function is rectangular. 
Further, in this case, the derivative of the function is strictly a negative 
Dirac delta function. 

At ordinary temperatures in the neighborhood of 300 K°, the delta function 
is still a reasonably good approximation of the derivative. To see this, we 
observe the derivative function 
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df(e) 
de kBT 

exp 
-l2~] 

1 + exp e-p 
kBT 

Setting the derivative of the derivative function to zero shows the minimum 
of the derivative function occurs when the energy is equal to the chemical 
potential.  This minimum value is 

df{e] 
de e=p 4kaT 

which goes to minus infinity as the temperature goes to zero. Further, the 
integral of the derivative function is seen to be minus one. This is an 
alternate demonstration that the derivative of the distribution function is a 
negative delta function in the limit as the temperature goes to zero. 

It is further found that the half width points occur at 

e-fi=kBTln{3±^) 

At room temperature, kBT is found to be about 0.025 eV; thus the width of 
the function is small in comparison to the chemical potential (= 7.09 eV for 
copper), so the delta function approximation is certainly adequate for order 
of magnitude calculations. 

II-3-2 A Variant of Liouville's Theorem 
For a system of particles, we define the phase space as the 6-dimensional 
space whose coordinates are the canonically conjugate positions and 
momenta of the individual particles. A particle motion can be described by 
a trajectory in phase space parameterized with respect to time. The system 
is then described by a swarm of points in the phase space and if there are a 
large number of points, we can treat them as an imaginary continuous 
fluid. 

Consider a small volume of phase space 5Vp, always containing the same 
particle points. As the motion of the system unfolds, this volume will 
change but will always contain the same number of points. We define the 
position vector in phase space and the gradient in phase space respectively 
as 

rph=2\xiXi +PiPi    and     VpÄ = Y xi— + pi—    with velocity 
tf Tt   dxi      dPi 

vph = rph 

Recall that the interpretation of the divergence of a vector field is that it is 
the flux of the field per unit volume exiting a closed surface. If the field is a 
velocity field, the change in the volume in a time dt is 
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4(<5^)= Vphvph5Vphdt    from which it follows     -^ = j Vph ■ vpk dVph 

Writing out the integrand and applying Hamilton's equations of motion 
shows that 

dV 
Vph 'vPh = 0     which means     —-^- = 0 

\JLv 

which is the variant of Liouville's theorem we wanted. A volume in phase 
space always containing the same particles is constant. As the volume 
moves through phase space, its shape may change, but its volume will not. 
Since the number of particle points in the volume is always the same, the 
density of points within the volume does not change. This number per unit 
volume will be referred to as the phase space density, denoted by the 
distribution function, f{q, p, t). This function uniquely determines all 
system properties, and our first task is to find the equation of motion for the 
distribution function, the subject of the next section. 

n-3-3 The Boltzmann Equation 
Consider a system of particles, and divide the forces acting on the particles 
of the system into external and internal forces. The external forces might 
be applied electric or magnetic fields and the internal forces we categorize 
as collisions of one sort or another. Now consider the system of particles 
where there are no internal forces acting and the external forces are 
denoted by F, and also consider a number of particle points moving through 
phase space contained in a small volume 

f{q,p,t)dVph 

From the last section, we know both factors are constant, so the equation of 
motion for the distribution function is 

dt 

and from the calculus of multidimensional variables and Newton's second 
law 

df    df ^ .  df ^ .   df    df    .  df    „ df -L---J- + r.-J-+p.-I- = -l- + r.-!- + p._L. 
dt     dt        dr dp     dt        dr dp 

Where we emphasize that F represents the external forces. If we now allow 
for collisions dfldt is no longer zero and may change because of the 
collisions. 

dt        dt ^collision 
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which defines the meaning of the collision term. It is the time derivative of 
f in the presence of collisions with all other parameters held constant. 
From our previous relation this may be written in the form 

dt        dr dp     dt. collision 

This is the Boltzmann equation, a fundamental relation for the discussion 
of transport properties. 

IL3-4 Collision Probability 
If there were a partially filled band in a solid that had a perfectly periodic 
lattice, the electrical conductivity of the solid would be infinite. The 
finiteness of electrical conductivity is caused by electron collisions with 
lattice imperfections. At room temperature, these are dominated by 
electron-phonon interactions. The electron-electron interactions serve to 
maintain the conduction electrons in local thermal equilibrium but do not 
contribute to charge transport because they do not alter the net electronic 
momentum. Thus we will concentrate on the electron-phonon collisions 
and make the following assumptions: 

The time between collisions is long in comparison to the time that an 
electron spends in the vicinity of a scattering center. 

The scattering centers are sufficiently dilute so that multiple 
collisions need not be considered. 

The electrons can be described by wave packets in a quasiclassical 
manner. This means that the extent of the wave packet in position 
space must be a reasonable fraction of a mean free path. 

The probability of collision is independent of the past history of the 
electron. This is related to our assertion above concerning local 
equilibrium. 

It will be part of our subsequent work to determine to what extent 
these assumptions are consistent with all results obtained. 

We define the collision probability T(t)dt as the probability that after a 
collision no collision takes place for a time t and a collision does take place 
at time t + dt. We will take At I % as the probability that a collision takes place 
in a small time interval At. With these definitions, the collision probability 
can be approximated by 

*M0^ = —fi-—T    or    T(nAt) = Ml-^-f 
T V T J t\ T 
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The exact result is found in the limit as At goes to zero. 

at-,oT{        T J x 

The normalization for this probability law is given by 

\T{t)dt= f -e~dt = l 
Jo Jo  T 

In the last equality, taking T to the right side of the equation and 
differentiating with respect to T gives 

\t(P(t)dt = 
Jo 

The integral here is just the average of t which gives the interpretation for 
T; it is the mean time between collisions or the mean lifetime after a 
collision. 

II-3-5 Relaxation Time Approximation and Path Integral 
It is frequently empirically observed that restoration of equilibrium occurs 
in an exponential fashion. Thus, our first approximation to a solution will 
be to assume the relaxation is uniquely exponential throughout phase 
space. We then have 

f{r,P,t) = f°+he~ 

where f° is the equilibrium distribution function. Our assumption that the 
relaxation is uniquely exponential throughout phase space implies h may 
be a function of q andp but is not a function of time, which implies 

dt Jcollision 
= "-(/• -f) 

and the Boltzmann equation in the relaxation time approximation can be 
written as 

dt dr dp        rK > 

In these relations, we refer to t as the relaxation time. 

Let us next consider a system in equilibrium with a group of particles in 
phase space located at (r, p) at time t. In equilibrium and in the absence of 
collisions, those particles would come from a point (r',p')  located on a 
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collision free phase space trajectory at time t -1\ In symbols we would 
have 

f°(r, p, t) = f°(r', p', t') = f[r(t -t'), p(t -t'), (t -1')] 

However, when collisions take place, the probability that this actually 
happens is given by the result of the last section. We take the average of 
such events to be the distribution function when there are collisions.  That 
is 

f(r, P, t) = J}°[r{t -t% p{t -t'), (t -t')] <P{?) df 

= f°f°[r{t-t'),p{t-t'),{t-t')}e^ *L 
Jo T 

This integral is referred to as the path integral [21], because the 
presumption is that we are integrating along a phase space trajectory, the 
path the particles would follow in the absence of collisions. The other 
implication of this is that r(t) and p(t) are to be found through the equations 
of motion in the absence of collisions. That is, the paths the particles would 
take when acted on by the external forces only. 

By recalling that the Boltzmann equation can be written simply as 

by direct substitution with an integration by parts, it can be shown that the 
path integral is a solution of the Boltzmann equation in the relaxation time 
approximation if we equate the relaxation time with the mean lifetime after 
collision. What we see here is, in the relaxation time approximation, the 
path integral is entirely equivalent to the Boltzmann equation. Thus, we 
will cast the integral into a somewhat more convenient form and then 
particularize it to the type of equilibrium distribution we will use in our 
further work. The first step is a further integration by parts which yields 

f(r,p,t) = f°+r^eJ*dt' 
Jo at 

II-3-6 The Short Relaxation Time Approximation 
In this approximation, we assume the relaxation time is so short that the 
derivative in the integrand does not change significantly in a time on the 
order of T. In that case, the derivative can be removed from the integral. 
Noting that 

df°      df° df° 
-1— = —— we can write f = f°+ x- 
dt'        dt dt 
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Writing out the total derivative gives 

df^+dr  dT_+dp  dT 
dt dt   dr     dt   dp 

or f=r+* df° . df° „ df° 
^— + r--r— + F-   ' 
dt dr dp 

n-3-7 Metallic Electrons 
In a metal, the conduction electrons are governed by the Fermi-Dirac 
distribution. For purposes of illustration, the free electron Fermi sphere at 
zero absolute temperature will be used. Using the relaxation time 
approximation, the average electronic momentum per particle will be given 
by 

[dt dr dp 
(P) = jjjd3pd3rp 

where N is the total number of particles. By symmetry, the first term 
vanishes. The Fermi-Dirac distribution has no explicit time or position 
dependence so the second and third terms vanish. This leaves us with 

(p) = jjjd3pd3rprF. df° 
dp 

In this situation, the distribution function is a function of the magnitude of 
p; it is spherically symmetric. It follows that 

(P>4 J ä>P d>rP,F.^-±fd'P frpiF.fiig 

-Ljä>P dvp^.pf i£=^-Jdv <^.pf 

As shown in the first subsection, even at room temperature, a delta 
function is a good approximation to the derivative of the of the Fermi-Dirac 
distribution, giving 

{p) = jjjd3p d3rprFP5 V 
2m 

-e« 

By transforming to spherical variables and picking them so that the force is 
in the z-direction, and noting the normalization for our distribution 
function is 
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Ph    4KP
3

FV 

we can now perform the integration1 

(p)=TFF2k 

This is reasonable since it is just the impulse applied to the electron by the 
force over the mean time of application. The average velocity is given by 

(„)=M=i£M 
m        m 

If the force is created by an electric field, the current density would then be 
given by 

(J) = (ne){v) = (ne)^ = ^^E 
m m 

where n is the number of electrons per unit volume. Thus we find for the 
conductivity2 

o = F- 
m 

There are two aspects of this result that are important for our present 
considerations. The first is that the collision time is generally a function of 
velocity. Thus taking it outside the integral involves a rather gross 
assumption. However, we see that when we are working with Fermi-Dirac 
statistics, it is a relatively good assumption. The importance to us here is 
that this means the mean free path calculations will also be relatively 
accurate where we define the mean free path by the relation 

■** F = ^F   F 

The second point is that the conductivity equation implies the electrons 
contributing to the conductivity are those whose energies are near the 
Fermi surface. That is a true statement. However, note that the n in the 
above relation is the total number of electrons per unit volume. In a sense, 
that is an accident of the form of the functions that appear in the 
formulation of the problem and how they are affected under integration. 

1 The integration is carried out using spherical variables with the vectors referenced to a 
Cartesian frame. It is instructive to write this out to see why the x and y components 
average to zero which, by symmetry, they must. 

2This is a well known result and one may wonder why we went through this analysis. It 
was the delineation of the assumptions leading to the result we wished to uncover. 
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QUANTUM STATES AND TIME SCALES 

II-4-1  Introduction 
We shall make a distinction here between a dynamical variable and the 
value of the dynamical variable. In quantum physics, dynamical variables 
are not represented by numbers. They are represented by operators. We do 
not want to keep repeating the word operator, so when we say dynamical 
variable, we shall mean the operator associated with that dynamical 
variable. The results of measurements yield values of the dynamical 
variable, specifically, eigenvalues of the operator. 

The state of a system is specified by giving the values of a complete set of 
commuting dynamical variables. If a dynamical variable commutes with 
the system Hamiltonian, the value of the dynamical variable is a constant of 
the motion. To find the general time development of a system, one 
frequently resorts to the time dependent Schrödinger equation. Except for 
the simplest cases, that is a difficult equation to solve and one must usually 
resort to approximate methods. 

In cases where the Hamiltonian is itself a function of time, the 
Hamiltonian can often be separated as a sum of time dependent and time 
independent parts where the time independent part represents the natural 
motion of the system. In these circumstances, the approximations 
applicable are dependent on how fast the Hamiltonian is changing with 
respect to the natural motion of the system. However, the natural motion of 
a system may also be a difficult problem. Thus, we need some general 
rules for conveniently estimating the time scales of natural motions. Before 
we do this, we need to recognize the character of various states that can 
exist. 

n-4-2 Classification of States 
A classification we will use is based on a comparison of the total energy of 
the system to its potential energy. Although we will not go through the 
details, the results are based directly on what one can expect from the 
general solutions of the Schrödinger equation. 

Bound states are those for which there is a center of attraction and there 
exists a distance beyond which the system total energy never exceeds the 
potential energy. The wave function will be exponentially damped at 
distances far from the center of attraction and the energy eigenvalues will 
be discrete. 
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Unbound states are those for which there are always regions where the 
total energy is above the potential energy, no matter how far from the center 
of attraction. The energy eigenvalues are always continuous. 

Metastable states are those for which the potential energy is above the total 
energy in the vicinity of the center of attraction but drops below, and stays 
below, the total energy at some distance from the center of attraction. These 
states are unbound according to the previous definition; their energy 
eigenvalues are continuous. 

n-4-3 Bound State Time Scales 
The picture that is often invoked here is that of a particle in a box. As noted 
above, solution of the Schrödinger equation for this problem will lead to 
discrete energy levels. For the time scale, what is generally envisaged is 
that the particle is bouncing back and forth between the walls of the box. 
The time scale is defined in terms of the particle transit time which is 
found using equations from classical mechanics. 

V 

where L is a linear dimension of the box and v is the particle velocity. 
Setting the zero of potential interior to the box, the velocity is found from 

v =,  yielding 

where m is the particle mass and T the kinetic energy. Quantum 
mechanically, this picture is, of course, nonsense. There is no particle 
trajectory here and hence, no velocity. However, it is well known that time 
and energy in physics are intimately related. For example, the 
conservation of energy can be regarded as a consequence of a time 
symmetry. Further, the last equation for T„ leads to reasonably accurate 
results in situations where we intend to use it. Thus, one might conclude 
that the time energy relation is the fundamental one, and the picture is 
simply a mnemonic for remembering the equation. One of the advantages 
of this equation is that the energy is something one may know from 
measurements as opposed to being required to calculate the energy 
theoretically. 

In our applications, we will be concerned with high speed transients acting 
on materials. The approach used for analyzing the material responses is 
dependent on the time rates of the natural motions of the materials as 
compared to the time rate of any applied perturbation. Thus we need 
convenient means for estimating time rates of material natural motions. 
Although we will couch the discussion in quantum mechanical terms, it is 
noted that similar considerations apply to macroscopic systems adequately 
described by classical mechanics. 

II-4-2 
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For an unperturbed system, the Hamiltonion will be time independent. 
Thus for the Hamiltonion of the perturbed system we write 

H = H0 + U 

where the first term completely describes the unperturbed system and the 
second represents the time dependent perturbation. 

There are two sources for nonzero electric susceptibilities. The first is 
caused by charge displacement which can occur in both polar and nonpolar 
molecules and the second is caused by the orientation of polar molecules.1 

We first consider charge displacement in oxide type insulators. 

In this case, it is likely the tight binding approximation will be applicable 
and for these considerations the electronic energy levels will not depart 
significantly from those of a hydrogen like atom. Thus for illustration and 
as a first cut at orders of magnitude we will look at the time scales 
associated with the natural motion of an electron in its ground state bound 
to a proton. In this situation, the Bohr-Sommerfeld quantization rules can 
be applied, specifically 

f pdq = nh 

where p and q are canonically conjugate variables. The two variables with 
which we are concerned here are the angular momentum and angular 
displacement. 

i Ldd = nh 

Noting that the ground state is circular, from elementary mechanics, we 
have 

mr co = nh 

where co is the angular frequency of revolution of the electron about the 
nucleus. The time of revolution T, is given by 2KI co, and using the relation 
between the centripetal acceleration and the interaction force between the 
electron and the nucleus, one finds 

T = ^ = 1.547 xlO-16 s 
me 

This is clearly well below any of the characteristic transient times we will 
encounter. Further, there is little likelihood, even in relatively complex 
solids, that this order of magnitude estimate could be increased by more 

iWe note that this discussion gives us an indication from whence the term "displacement 
current" comes. 
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than one or two orders of magnitude. This does not mean that that the 
material response times are on the order of r. It does mean, in calculating 
or visualizing quantum mechanical perturbations, that an adiabatic 
approach can be used so long as the perturbation is not so strong as to 
produce quantum transitions. The latter case is treated in detail by Böhm 
[19]. The condition for no quantum transitions to occur is given by 

(*.•-«:)' 

dU      1 «1 
dt 

where here the e's are the energy levels between which a transition could 
occur. Again using the parameters from the hydrogen atom for order of 
magnitude estimates, an analysis following the lines presented above 
shows that the energy levels are given by 

(^L = £o(-4-A) where e0 = 13.6 eV \m     n J 

and m and n are integers. For a transition from the ground state to the 
first excited state, the change in energy is about 10 eV. For this transition, 
the Böhm condition becomes 

dU 
— «3.844 xlO4 ergs Is 
at 

If the change in potential is caused by an electric field over a region of 
atomic dimensions, the restriction on the time rate of change of the electric 
field is 

3E 
— «8.008X1021 SV/cm/s = 2.403xl024 V/cm/s 
at 

At first sight this seems to be excessive. However, think of it in terms of a 
resonant condition and think of the Fourier transform of a linearly rising 
pulse that flattens out at some point in time. The energy content of the 
pulse is spread over a continuous range of frequencies. For a small range 
around a resonant frequency, the energy content will be correspondingly 
small. 

Even for a nuclear electromagnetic pulse with a rise time of 1 ns and peak 
gap fields of 107 VI cm the time rate of change would only be on the order of 
1016 Vlcm/s. It might appear that we could never get a transition. 
However, in quantum mechanics, one can never say never. The real 
question is a matter of how small is the probability in comparison to the 
number of opportunities one has available. We will return to this point in a 
later discussion. 

II-4-4 
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II-4-4 Wave Packet Spreading 
We wish to treat the electrons in the conduction band of either a metal or an 
insulator by methods of quasiclassical dynamics. The general theory was 
previously described and an example in terms of a particle in a constant 
force field given [20]. In the latter case, it was found that the product of the 
standard deviations in position and momentum space are given by 

(*x*)-!^+g)Wf 
and that for a constant force, there was no spreading of the momentum 
wave packet. It is observed that the standard deviation product starts at the 
minimum value allowed by the uncertainty principle. For the standard 
deviation in position space as a function of time, we have 

-iferSI'W 
For a specific time, this function will be a minimum if we pick the 
momentum standard deviation according to 

Ak ■ "mm 

The relationship between this value and the standard deviation of the 
position probability at time t is 

V       Jt\       Jmin ~     !~n 

The significance of these results for our present considerations, is that to 
treat the particles quasiclassically, there must not be substantial spreading 
of the wave packets during the time between collisions or along a path 
length on the order of a mean free path. For a metal, the latter two 
parameters were found in terms of the conductivity in Chapter 2. 

ne zF . 
c = £- and AF = vFxF m F       F  F 

We take copper as a representative metal because it is a simple metal with 
well established properties that are nearly free electron like. Assuming the 
parameters for copper,2 we have 

TF = 24.5fs and AF = 387.3 Ä 

2See Appendix II-A-1. 
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which leads to 

Akmin = 0.0419 Ä-1 and (Ax)tF = 16.9Ä 

and we see that the conditions for a quasiclassical treatment are well 
satisfied. 

Perhaps one of the most interesting numbers in this set is the value for the 
mean free path. Insulative particle coatings with thicknesses of this 
magnitude are probably feasible. If there were no collisions in the 
insulator, the insulator would then be acting very much like a vacuum 
barrier which would lead to almost pure metallic quantum tunnelling. 

n-4-6 
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BULK CONDUCTION IN INSULATORS 

n-5-1  Insulator Characteristics 
In our analyses we will not assume the insulators are highly ordered. If 
we do not make this assumption, what do we give up in terms of our 
previous thinking and what can we retain? The most important thing we 
give up is crystallinity and along with it the reciprocal lattice and the 
crystal momentum form of Newton's second law. However, if the material 
shows a linear conductivity range at low fields, a conduction band may 
exist. If such a band does exist, because of the low conductivity of the 
material, we know that there is a substantial gap between the conduction 
band and the valence band. 

Thermodynamics and the underlying statistical mechanics are very 
general. What we retain is the thermodynamic principles of our previous 
analyses. These principles will be our primary tools. In particular, the 
application of the Fermi-Dirac distribution function at the valence and 
conduction band edges is appropriate. Although out of context, with respect 
to which the the term is generally used, we shall continue to refer to the 
chemical potential as the Fermi energy. 

We next wish to enquire as to where conduction charges come in an 
insulator. At low fields there will be electrons thermally excited into the 
conduction band with an equal number of holes in the valence band. Their 
number and mobilities will determine the electrical conductivity. In an 
impure material, there will likely be available states for donors near the 
bottom of the conduction band and acceptors near the top of the valence 
band. There will also be Tamm states. Since these are associated with the 
surface contacts, and since we are not considering these at this time, we 
will ignore the Tamm states. 

We do not know a great deal about the parameters related to conduction in 
insulators. We will need to make some "educated" guesses. Our aim is to 
produce a model that makes physical sense, can act as a qualitative guide 
for further progress, and will yield more quantitative results when the 
appropriate parameters are given. The educated guesses for the starting 
model-parameters are given in Appendix II-A-1. To keep this first analysis 
as simple as possible, we make the assumption that the impurity states 
consist only of donors in the vicinity of the conduction band. This will be 
amended as future data dictates. 

II-5-2  Zener Tunnelling 
In the past, we have considered Zener tunnelling as a possible mechanism 
for producing conduction charge carriers in excess of those under low field 
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conditions. That is, the applied field is of sufficient strength to directly lift 
an electron from the valence band into the conduction band. We will now 
argue, that is an unlikely event. 

In our previous discussions, the gap fields predicted for metallic quantum 
tunnelling have been on the order of 107V/cm. However empirically, we 
know the fields are, at least, an order of magnitude lower.1 For 
computational purposes we will pick 2.5 x 106 VIcm. The valence electrons 
will be relatively tightly bound and will be in core states with dimensions on 
the order of 1 A. The corresponding electric fields to which the valence 
electrons will be subjected by the remainder of the electrons and the 
constituent nuclei will be on the order of 4.8 x 106 statvolt/cm or 1.44 x 109 

VIcm. This is far in excess of the applied fields we expect to see in our 
surge arresting materials. 

Another way of arriving at the same conclusion is to consider how far a 
valence electron must move in a given applied field to acquire the necessary 
energy to be moved into the conduction band. Assuming a band gap of 2.5 
eV, the required distance is found to be about 100 Ä. That's about twenty 
interatomic spacings, again, not very likely. We thus conclude that Zener 
tunnelling from the valence band to the conduction band will not be a 
substantial contributor to charge transport in an insulator and that we 
should focus our attention on other conduction mechanisms.2 

II-5-3 Impurity State Parameters 
We do not know anything about the nature of the impurities in our 
insulators. However, it turns out that we can obtain some semiquantitative 
results on the basis of a very simple model. We can consider the donor 
atom as a hydrogen like structure consisting of an ion core and a single 
orbiting electron. To get something related to the dynamics in our 
insulator, in the results for the hydrogen atom, we simply use the effective 
electron mass of the electron at the band edge and the dielectric constant of 
the insulator. For the ionization energy and radius of the first Bohr orbit 
we then obtain [13] 

et = [MblUL\ey and a-°^-A 
V £

r   m) mjm 

where er is the relative permittivity of the insulator.  Using the parameters 
in Appendix 1, we find 

et = 251 meV and ad = 9.58 Ä 

*At least partly caused by the Schottky effect.. 
2However, see related comments in the next subsection. 
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The field strength at the first Bohr radius is found to be 5.23 x 106 VIcm and 
the distance to impart the ionization energy is 10 Ä. Thus, although 
marginal, there is a definite possibility for Zener tunnelling from the donor 
level to the conduction band. Whether or not this actually occurs depends 
on factors that will be subsequently addressed. However, this type of 
tunnelling is a difficult problem. If it turns out that we need to address it, it 
will be done in a later task. 

In the next two sections, we will describe the thermostatistics of insulators, 
first with no impurities, and then with impurities. Recognizing that the 
major distinction between an insulator and a conductor is the magnitude of 
the valence to conduction band gap, we will use silicon as an archetypal 
example. Even though silicon3 is a semiconductor, we have chosen it 
because there is extensive empirical data available. Thus we can use this 
as a gage of the accuracy of the calculations we make prior to moving to the 
relatively unknown situation in a true insulator. 

n-5-4  Thermostatistics With No Impurities 
As stated above, the main distinction between a semiconductor and an 
insulator is that the insulator has a larger band gap than the 
semiconductor. The equilibrium thermal statistics of the two are 
essentially the same. Under normal circumstances (e-eF » kBT), and the 
concentration of intrinsic electrons is given by [13] 

n< = ic^)    exPK£r-ec)/kBT] 

where ec is the energy of the conduction band edge. In general, the 
determination of a chemical potential may involve a rather difficult 
calculation. However, in this case, recognizing that for a pure substance, 
the electron and hole concentrations must be equal, leads to the result 

1       3 £F = -££g + -jkBTln{mh/me) 

where eg is the difference in energy between the conduction and valence 
band edges. For silicon, we find 

eF = 0.5673 eV and ne = 1.223 x 109 cm^ 

The density of occupied states is given by the product of the density of states 
function and the Fermi function. At the conduction band edge, the density 
of states function is rising quadratically and the Fermi function is falling 
exponentially.   Thus the density of occupied states will be fairly sharply 

3Only by definition. 
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peaked at a value slightly above the conduction band edge.  The energy at 
which this occurs is found to be 

em = £c + :B' 

For silicon at room temperature, this value is 1.123 eV.   The velocity of 
electrons at this energy is given by 

_ \2{em-ec)     \kjT 
™e 

For the electrons under consideration the value is 1.3 x 107 cm Is. Using the 
average of the electron and hole effective masses and the measured 
conductivity of silicon, this implies a mean collision time of 2.126 ps and a 
mean free path of 2,330 A. Both the collision time and the mean free path 
are long. 

There are two comments concerning this result. First, the sample with 
which we are dealing here is extremely pure and the crystal structure is 
highly ordered. Second, the electron velocities at the peak of the occupied 
density of states is about an order of magnitude below those found in metals 
at the Fermi energy at the same temperature. 

How large would the band gap need to be to make silicon an insulator? A 
generally accepted dividing line is a conductivity of 10~13 mho Im. Thus we 
will retain other parameters constant and determine the charge 
concentration that will lead to this conductivity. The required charge 
concentration is 0.318 cm* which leads to a band gap of 2.16 eV and a 
Fermi energy of 1.094 eV. Note the smallness of the electron concentration 
for this level of conductivity, and this is not even a really good insulator. 
Recall that these calculations are based on a pure material. In a quality 
practical insulator, there may be donor and acceptor impurities. In order 
not to degrade the insulator, they must be small in number and the energy 
gap will need to be larger than calculated above. The energy gap in 
diamond is 5 eV and we have selected 3 eV as a typical value for use in our 
insulator model. 

For our modified silicon model, if the energy gap were set at 3 eV, the 
intrinsic electron concentration would be 4.682 x 10~8 cm~3 and the 
conductivity would be 1.472 x 10r20mholm. If the measured conductivity 
were above this value, which it generally is for most insulators, one would 
then conclude that the conductivity of most insulators is dominated by 
impurity donors and acceptors. 

II-5-5  Thermostatistics With Impurities 
In this subsection, we assume that donor impurities dominate. In that 
case, the number of electrons in the conduction band is accurately 
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approximated by the number of ionized donors. On the average, the 
number of ionized donors will be given by the probability of an electron 
missing from a donor level. Mathematically, we have 

ne = N+D and N+
D = ND[l-f{eD)] 

where the pluses represent the ionized donors. Combining these with the 
equation for ne on the previous page gives 

which is a transcendental equation from which the Fermi energy may be 
determined. For silicon, the donor energy level predicted by our equation on 
p. II-5-3 is 25.83 meV. The measured values depend on the type of impurity 
and range between 39 and 49 meV, with an average of 44 meV. It appears 
that the predicted value is too low by a factor of about 1.7. A similar result is 
obtained for germanium. Thus we will modify the donor ionization 
equation accordingly and write 

(23.1mA 
£,• = 

e2   rrij 
eV 

retaining the form in terms of effective mass and relative dielectric 
constant. For our insulator model, we then have a donor ionization energy 
of 426.1 meV. This is much larger than what is encountered in a typical 
semiconductor and is occasioned by the relatively lower dielectric constant. 
Note also that this goes in the right direction for a good insulator where the 
low field resistivity is likely to be dominated by the impurities. 

For our insulator model with a donor concentration of 1016 cm"3 (about one 
part per million), we find a Fermi energy of 2.723 eV, an electron density of 
2.574 x 1013 cmr3, a mean thermal velocity of 1.626 x 107 cm Is, a collision 
time of 2.295 x 1(T27s, and a mean free path of 3.732 x KT20 cm. 

It is not likely that the last two numbers are totally realistic. However, the 
smallness of those numbers delivers a message. The message is this: For 
a material with parameters similar to our insulator model, you have two 
choices, either there is no extensive conduction band in which conduction 
can take place or, if there is one, the collision sites are so densely packed 
that their density accounts for the low value of conductivity observed. A 
corollary to that conclusion is, any substantial bulk conduction through the 
insulator will ultimately destroy the insulator. A further discussion will be 
given in the following section. 
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II-5-6 Dielectric Breakdown 
In all cases observed, dielectric breakdown leads to permanent alteration of 
a device that depends on the bulk insulative property of a solid dielectric. 
This characteristic is ubiquitously demonstrated in capacitors. A major 
factor in this behavior is the fact that breakdown generally occurs at one 
"hot spot" and once initiated, overly large currents are passed through the 
hot spot leading to permanent damage to the capacitor. Once breakdown 
occurs, the operating characteristics of the capacitor are, at best, lowered 
from their specified values and generally, the capacitor is simply shorted. 

The same type of behavior is observed in metal particle surge arresting 
materials, the likely causes are as follows. Prior to breakdown, all 
interparticle junctions in the material operate on a relatively equivalent 
basis. As in the capacitor, breakdown will occur through a highly localized 
preferential path. This has been repeatedly observed experimentally. Once 
established, this path dominates all others and draws an inordinately high 
amount of current to the near exclusion of the other paths, a condition not 
existent prior to breakdown. The local heat generated in the high current 
path will damage the dielectric in that path and is likely to melt the metal 
particles in the path, forming a connected metallic bridge, resulting in a 
permanent short. 

In a perfectly ordered crystalline dielectric, the mobility of an electron in 
the conduction band would be extremely high because there would be no 
electron-phonon collisions. No thermal energy would be transferred to the 
ion core lattice. If the order is reduced, either by impurities or phonon 
distortions, the mobility will also be reduced but could remain relatively 
high because of the basic underlying order of the crystalline state. 

In an amorphous dielectric, the situation is much worse, there is no 
intrinsic long range order. It is unlikely that there is a significant 
conduction band that extends throughout a macroscopic region. There will 
be high electron-lattice interaction. A large amount of the energy 
transferred to any mobile electron will be delivered to the lattice. For high 
current densities, this is a prescription for the destruction of the dielectric. 

Accounting for these factors, it would appear that building a reliable surge 
arresting device that depends on bulk dielectric breakdown of any dielectric 
is highly unlikely and is particularly unlikely if the dielectric is 
amorphous, specifically, if it is polymeric. 

A key to success in this whole matter is to constitute the surge arresting 
materials in such a way that, throughout the entire surge arresting event, 
there is no path through the material that is the dominant current carrying 
path to the exclusion of other paths. The current density throughout the 
device needs to be as uniform as possible. Additionally, there is an 
insidious statistical effect which is described in Appendix II-A-2. 
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All of this indicates the material must be physically highly uniform, and 
avalanche conditions are to be avoided. It should also be noted that these 
are related to conditions that lead to fast switching times and optimal 
energy handling capability.4 

11-5-7 Relative Electron Densities 
In Section II-1, there were clear indications that intermetallic gaps on the 
order of atomic dimensions are required to enter the pure quantum 
tunnelling regime. In what we have seen in the last subsection, it is 
equally clear we want little interaction between the tunnelling electrons 
and the insulator in the intermetallic gaps. We have indicated destruction 
of the insulator is most likely the result of electron avalanche. It is 
observed5 that for a mica 1 mm thick, the breakdown strength is on the 
order of 500 kV/cm, while for a thickness of 0.1 mm, the breakdown 
strength is on the order of 1500 kV/cm. We believe the increase in 
breakdown strength is because the distance between electrodes is shorter in 
the latter case. There is less probability for interaction, and avalanche can 
not be initiated until higher field strengths are reached. 

With gaps on the order of atomic dimensions, the probability of an 
interaction is certainly reduced, as born out by our results concerning 
mean free paths, apparently supported by the last paragraph. However, 
there is another factor involved that could well be of equal or greater 
importance. There is a distinct difference between bulk current in the 
metal particles and the tunnelling current across the intermetallic gaps. 
The current density in the metal is the product of the conduction electron 
charge density and their drift velocity. The electrons emitted from the 
metal into the intermetallic gap are entering the gap with velocities 
corresponding to the Fermi energy, and the current density is this velocity 
times the electron charge density. The drift velocities are on the order of 
cm/s, whereas the tunnelling velocities are on the order of 108 cm/s. From 
conservation of charge we must have 

PB
V

B=PT
V

T     
or     — = — = 10* 

PB    VT 

The charge density in the gaps is about eight orders of magnitude below 
that in the metal, with a significant reduction in the probability of 
interaction with the insulator.6 

II-5-8  Summary and Conclusions 
To our knowledge, all previous attempts at producing quantum tunnelling 
varistor devices used materials consisting of two phases only, bare metal 

4See Dutcher [2]. 
5Smithsonian Physical Tables, 9th revised ed. 
6A more refined analysis would predict a ratio of the order of 10"6, still a large reduction. 
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particles embedded in a polymeric binder. Some limited success has been 
attained. However, manufacturing yields and energy handling capacities 
have been low. * The typical binder of choice has been a silicone rubber. For 
mixing the metal particles into the binder, the crudest method used a 
rubber mill. In two instances of which we are aware, sophisticated mixing 
machines of the Braebender and Hake-Buehler types were used, with 
results no better than with the rubber mills. 

With what is presented in this part of our effort, it seems apparent why 
results have not been better. The factors involved are as follows: 

The binder and mixing methods did not permit sufficient metal 
loadings to attain a substantially quantum tunnelling material. 

There was a high likelihood for continuous metal to metal contact 
from one electrode to another. 

The dominant insulator conduction mechanism was avalanche in 
the binder resulting in leading edge overshoots and low energy 
capacity. 

The materials had a fairly high degree of nonuniformity. 

In the approach proposed for the present effort, these difficulties are 
averted in the following ways: 

Our metal particles are coated with a thin insulative layer with a 
thickness on the order of atomic spacings. 

The particles are loaded into our test cells in the presence of an epoxy 
binder and allowed to settle before curing, achieving a near close 
packed configuration with the particle coatings setting the tunnelling 
gap. 

Dominant path failure is averted by limiting the amount of current 
through any individual path. 

With these conditions true quantum tunnelling can be approached with 
little interaction between the tunnelling electrons and the insulative layer 
separating the metal particles. 
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ELECTRODYNAMICS AND THERMODYNAMICS 

n-6-1   Introduction 
In much of the preceding, we have been concerned solely with occurrences 
on a microscopic level, obtaining estimates of what happens at individual 
interparticle gaps. Our surge arresting materials will not be entirely 
homogeneous. As previously indicated, there will be statistical variations 
enhancing the probability of dominant path failure modes. This is a matter 
of material properties in the bulk. What we need is a macroscopic 
treatment. To effect this, we will develop a continuum mechanical model 
using parameters from the microscopic analyses. 

We will subdivide the surge arresting material into domains, called control 
volumes, that are large with respect to the sizes of the particles but small 
with respect to the total volume of material. In particular, the control 
volumes will be sufficiently small so that the microscopic properties of a 
control volume can be considered constant with the statistics applied from 
one control volume to another. The field equations are then applied to each 
control volume by finite element analysis with the appropriate boundary 
conditions satisfied between all control volumes. The latter aspect is 
described in detail in Part III. The purpose of this section is to derive the 
field equations, to define the initial and boundary conditions and to 
delineate the parameters to which the statistics will be applied. 

II-6-2 Electrodynamics 
The fundamental equations of electrodynamics are those of Maxwell. In 
the presence of material media, they may be cast in the form 

VD = p VxE = -^- VB = 0 VxH = J + — 
dt dt 

We will be concerned with conductive materials where we will take the 
constituitive relations to be 

D = eE B = \iH J = oE 

and tentatively assume e and (i are the same for all control volumes and the 
electrical conductivity o varies in a statistical manner from one control 
volume to another. 

With a step input, if it were not for changes in material properties with 
time, the voltage across our varistor devices would rise to a steady state 
value. The time over which this occurs is on the order of half a 
nanosecond.  It is after this initial transient that the statistical effects will 



n-6   Electrodynamics and Thermodynamics 

manifest themselves, and the time rates of change of the fields will be 
relatively slow. Under these conditions, the time derivatives in the Maxwell 
equations may be neglected and assumed to equal zero. 

We are mainly concerned with energy transfers; these will not involve the 
magnetic field, since magnetic forces are perpendicular to particle 
motions, so we will concentrate on the electric field and current density. 
The governing relations are the continuity equation and the first and 
second Maxwell equations. 

VJ=0 VD=p VxE=0 

Assuming the nonconducting electrons are not polarized, the boundary 
conditions are 

where the first and third equations are the required boundary conditions, 
and the first two equations can be solved, yielding the value of the surface 
charge density in terms of either electric field 

P. = -e0^—^n-E1 = -e0-i '-n -E2 
a2 Cj 

Since the curl of E is zero, we can express E as the gradient of a scalar 
potential and our problem reduces to standard solutions of Laplace's 
equation, 

E = -VV FV = 0 

with boundary conditions 

c2(vv2)n = ^(vvx      (vva)t = (vv2)t 

Laplace's equation is elliptic; this means one obtains meaningful solutions 
for either Dirichlet, Neumann, or mixed boundary conditions. In our 
present case, the things over which we have control are the potentials of the 
electrodes. The first boundary condition above implies the normal 
component of the electric field at the edges of our material is zero. Thus we 
have a mixed boundary condition problem, Dirichlet at the top and bottom 
and Neumann on the edges, with the boundary values given by 

v;=0=o Vy=y^V0 n.(VV)edge=0 

where y0 is the interelectrode spacing and V0 is the potential of the upper 
electrode. 
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In stark contrast to dielectrics, there are no fringe fields, a result of the 
surface charge accumulations. In a good insulator, there are too few 
charges to supply the charge accumulations, thus the fringe fields. For a 
nonhomogeneous conductor, the directions and magnitudes of the 
tangential components at the outer surfaces may vary, but there is no 
component normal to the surface. 

II-6-3  Thermodynamics 
For the present our main interest is in the qualitative aspects of statistical 
effects on dominant path failure, to that end, we will consider the worse 
case scenario where the full threat energy is delivered prior to the time any 
significant heat diffusion can take place. In Phase II, for other reasons, 
heat diffusion will be considered. For the present, we will consider the 
internal heat source to be the Joule heating in the form 

s{r,E,T,t) = J(r,E,T,t) ■ E{r,t) = a{r ,E ,T ,t)E\r ,t) 

and consider no heat sinks. This equation is then coupled with the ones of 
the previous section to obtain a solution in an iterative fashion. 

The rise in temperature within a control volume will be given by 

at     c at     cj 

where c is the heat capacity of the control volume, Q is the heat input and 
the integral is over the control volume. 

II-6-4  Control Volume Conductivity 
The conductivity will vary from one control volume to another. We will 
assume a control volume conductivity of the form 

Oi(r,E,t,q) 

where q is the vector containing the statistical variables from the quantum 
analyses. We have left the temperature out of this equation, since we have 
previously shown temperature will not have a significant effect, at least, not 
until the destruct point. 

II-6-5 Circuit Model and Initial Conditions 
We will assume the varistor is excited from a step voltage source with a 
finite internal impedance. We will divide the time into small steps of size 
At. Using finite elements, we then solve the boundary problem for the 
potential determining the current density and energy density in each 
control volume through the relations 
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E = -W J = oE Qd = J-EAt 
where Qd is the heat density generated within a control volume, which, in 
turn, determines the increase in temperature of each control volume in 
time At. The new temperature is used in the next time step and this 
process is continued until a path temperature reaches the point of path 
destruction. 

n-6-6 Test ofthe Field Equation Solutions 
In checking our finite element programs, it is desirable to have problems to 
which we know the answer. The simplest problem we can think of to test 
our solution to the field equations, yet having enough content to act as an 
effective test, is a cylinder of conductivity ü1 embedded in a medium of 
infinite extent with conductivity a2 with a uniform asymptotic field. We will 
take the cylinder axis parallel to the 2-axis and the asymptotic field parallel 
to the ac-axis. With the electric field in the positive «-direction, at infinity the 
asymptotic field will be 

E2„ = xE    with potential function  V2„ = -Ex = -Ercos<p 

From the geometry of the problem and the functional form of the cylindrical 
harmonics, one might readily guess a solution may be of the form 

Vj = BrcosQ and V2 = ErcosQ + A-cosQ 
r 

Applying the boundary conditions, we find 

VI = -EJ°'„ rcosQ     and     V2 = -E\ 1 + °_2~ aJ £\rcos<p 
O2+G1 \ a2 + (jj r' 

is, in fact, the solution.   For the electric field components in cylindrical 
coordinates we have 

EJr = E-^^cos(t> E1, = -E-^-sin<t> 
(y2 + (Jj v a2+ (jj 

\     °2+°ir2j 
coscf) E8t=-E 

K     a2+air
2j 

sin<t> 

with the rectangular components given by 

Ex = Ercos (P-Ef sin </>    and    Ey = Ersin <p+E^ cos 0 

From the difference in the normal components we find the surface charge 
density 
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pg = en-(E2- E^ = -2eE^-^- cos<p 
<y2+^! 

In making the finite element test, Region 2 will, of course, be finite. To 
approach a result corresponding to the present problem, we must center 
Region 1 in Region 2 and make Region 1 small with respect to Region 2 and 
check to verify all constraints of the analytic solution are reasonably 
satisfied. 

II-6-7 Test of the Nonlinearities and Temperature Dependence 
In this subsection, we will kill two birds with one stone. In the first place, 
we will give a rudimentary presentation of the steps gone through to 
determine varistor requirements and secondly present a device meeting the 
requirements that is suitable for another test case for the finite element 
analyses. 

Suppose we have a power matched transmitter operating at 15 kW rms into 
a 50 ß load. The peak voltage will then be about 2.5 kV. We might use this 
value to set the value of the reverse standoff voltage of a protective varistor. 
In addition, we will specify a reverse leakage of no more than 1 mA. The 
transmitter is capable of withstanding a hit of 5 kV and the maximum 
threat is a pulse with peak voltage of 80 kV. To the varistor, the threat 
appears as a 40 kV source in series with a 25 Q resistor1, and the voltage 
across the transmitter input will be equal to that of the varistor. The peak 
current through the varistor will be 1.4 kA with a peak power delivered to 
the varistor of 7 MW. Summarizing in terms of varistor parameters, we 
have 

Vr = 2.5kV Ir = lmA Ip = 1.4kA Vc = 5kV Pp = 7 MW 

In Subsection II-1-6 the device current was given by 

I = KV V
2e~Pv/v     with    Kv = A K* 

( j V 
and    ßv = ngßt 

\ng 

Using the design equations of Subsection II-1-12 we arrive at 

Kv = 64 ßv = 6.8xl04 A = 1.0cm2 

The resultant varistor characteristic and load lines are shown in Figures 
II-6-1 and II-6-2. The time at peak current to reach a 100 °C temperature is 
found to be 25.7 ßs for a varistor with a volume of one cubic centimeter. In 
this example, the number of particles per unit volume is 1012 cm'3 with 
diameters of 100 jim. The interparticle gaps are 100 Ä. 

1Thävenin's theorem. 
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Fig. n-6-1    Linear plot of the varistor characteristic and associated load lines.  The load 
lines shown are for threat voltages of 40, 60, and 80 kV. 
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Fig. II-6-2   Log linear plot of the varistor characteristic. 
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On page II-1-22 we had the equation for the tunnelling current density in 
the Nordheim-Fowler approximation 

j(Eg) = KEEy
p'/E< 

where here we have added the subscript g to the field to emphasize the field 
in this equation is the gap field. In moving to a finite element analysis, the 
field we will be computing with Laplace's equation is an apparent field 
which we will denote by E with no subscript. 

Now consider an element of path Al. There will be a number of particles 
along this path which we will denote by An and the number of gaps will be 
closely the same. If AV is the potential difference between the ends of the 
path element, the apparent field will be approximated by 

Al 

Within a finite element control volume we assume the parameters are 
uniform, so the potential across the path element may also be written as 

AV = -(An)gEg 

Combining the last two equations gives 

F - E 

where N is the number of particles per unit length along the path element, 
and approximate N by 

N = {Nvf 

where Nv is the number of particles per unit volume. The NF-equation is 
then given by 

J(E) = KE \JL) e~NsßdE     with conductivity     a = -^Ee~N8ß^/E 

The test of the finite element program is to verify that using the above 
values for conductivity, the temperature rises to the value previously given. 
Once verified, this gives reasonable assurance the finite element results 
will be accurate when g is statistically varied to determine dominant path 
effects. 
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In fabricating our materials, we will strive for as nearly a close packed 
structure as possible. Ideally all the particles would be touching one 
another with the gaps set by the insulative coatings. We will use a 
Gaussian random number generator, taking the absolute values of the 
numbers generated as additions to the nominal gap value. 
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DEFINITION OF STATISTICAL PARAMETERS 

n-7-1 Evaluation of Bulk Conductivity 
As indicated in the previous section, our continuum mechanical model will 
be based on approximate bulk conductivity. As usual, we are here mainly 
interested in the qualitative behavior of the materials, so we will use the 
Nordheim-Fowler approximation of Section II-1-9 and the parameters for 
copper. The predicted current densities will probably be higher than 
actual, but the general trends should be well illustrated. 

Expressing the NF result in our standard notation we have 

,1/2 

J = 6.1x10-* ̂ ^E'expi-e.SxlO'^/E) 

with the conductivity being given by 

c = - = 6.1 x *>Y^* Eexp(-6.8 x «Tf/B) 

The E in this equation is the gap field.  The number of gaps along a given 
path As is roughly given by 

An =— 
D 

where D is the diameter of the particles.  The gap .E-fields along this path 
are then approximately 

g As 

where g is the width of the gaps and AV is the electrostatic potential 
difference across the path. 

II-7-2  Statistical Parameters 
For each control volume, we are assuming the conductivity is constant. 
From the previous section we had for the i-th control volume 

<Xi(r, £,£,?) 

where q is a vector containing the statistical parameters.   From the our 
approximate bulk conductivity equation we have 
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q = (eF,<t>,Dfg) 

Each of these parameters will be given a Gaussian distribution about some 
nominal value, and it is expected that variations of <j> and g will have the 
most dramatic effects. 

II-7-3 Inclusion of Series Path Resistance 
We have previously been concerned with the dominant path failure mode. 
A possible amelioration of this effect is to purposely introduce a resistance 
in all paths. One way of accomplishing this is to use metal coated 
insulative particles overcoated with an additional insulative layer to set the 
gap widths, where the metal coating is sufficiently thin so as to provide the 
additional path resistance. To model this we take the conductivity of the 
control volumes to be 

0 _   OioOi{r,E,t,q) 
"    o^ + Oiir^J.q) 

where oi0 is the reciprocal of the additional path resistance and is an 
additional statistical parameter to be Gaussianly distributed. One of the 
goals of this effort is to find the approximate values of oio that quench 
dominant path failure. 

H-7-4  Gap Statistics 
Previous discussions have been couched in somewhat general form so they 
will be appropriate for future efforts. It is expected that variations in gap 
widths will have the most dramatic effects, so in Phase I we will 
concentrate on this parameter as far as statistical variation is concerned. 

There are two contributions to the gap width, the thickness of the insulative 
coatings and the separation distance between the particles. The first we 
will denote by t and the second by s. The gap width is then given by1 

g = t + s 

We will assume the statistics on s are half Gaussian with a density 
function given by 

Ps{s) = T=exp 
>r „ > 

v^y 

In fabricating our materials, we attempt to have all the particles touching 
one another. This density function concentrates probability at zero 
separation. A plot of the function with unit os is shown in Figure II-7-1. 

1The thickness here is the thickness of the coatings on two particles. 
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Fig. II-7-1   Half Gaussian probability density function with unit a.. 

By straightforward integration, the mean value for this density function is 
found to be 

<s>=v¥Xsexp 

where in general we would have 

-¥ % 

(s) = crsJ^~ 0.7979 GS 
V % 

For the separation parameter, we again need a density function with a 
positive domain, but one which concentrates probability away from the 
origin. Such a density function is the Rayleigh density function given by 

Pt{t) = stexp 
a: \°t. 

This function with unit ct is shown in Figure II-7-2. 
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Fig. II-7-2   Rayleigh probability density function with unit at. 

Using the results of the integral for the standard deviation of a normal 
density, one finds for the mean of the Rayleigh density 

<*t Jo 
t2exp -T dt 

= G<& 
1.253 at 

The Rayleigh density function has a nice property, useful in our present 
circumstances. It can be generated from Gaussian processes. If x and y 
are two Gaussian random variables with zero means and standard 
deviations both equal to at, the variable t given by 

t = 4x2 + y2 

will be a random variable with a Rayleigh density function with parameter 
Gt. Take note of the fact that the parameter ot in the Rayleigh density 
function is neither its mean nor its standard deviation. It is the standard 
deviation of the Gaussian density functions from which the Rayleigh 
variable is generated. The geometric significance of at is that it is that 
value of t for which the Rayleigh density function is at its maximum. 

Since the coating thickness and separation are statistically independent 
variables, the mean of the gap width will be 
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(g) = 1.253 at + 0.7979 os 

This expression can be used to explore the effects of the tradeoff between 
departures of the mean of t from its nominal value and departures of s from 
its nominal value under the statistical assumptions made. 

II-7-5 Critique of the Preceding Procedure 
Although the above procedure will give us some insight to the dominant 
path phenomenon, in both the half Gaussian and Rayleigh density 
functions described, there is only one parameter at our disposal. This 
means we can not independently set the mean of the functions and their 
standard deviations. Ultimately it will be desirable to do this, requiring a 
deeper analysis of the statistical situation. This must wait until Phase II. 
However, the deeper analysis will only affect the methods for generating the 
statistical parameters and will not impact the remainder of the computer 
programs. 
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FREQUENTLY USED RELATIONS, CONSTANTS, 

AND CONVERSION FACTORS 

Relations 

Free Electron Fermi Sphere 6p    2m 
(3K

2
NT 

1  v ) 

Hydrogen atom energy levels En = 13.6—2 eV 
n2 

Density of states in k - space 1 
—    one 
K 

dimensional 

Free electron density of states 

4K
3 three dimensional 

. v     V (2mY r 

Physical Constants 
Electronic charge 

Electronic mass 

Planck's constant divided by two pi 

Boltzmann's constant 

Avogadro's number 

Nordheim - Fowler parameters 

e = 4.8xl0-10esu 

= 1.6xlO~19C 

m = 9.11xl0-28gm 

H = 1.06 xlO'27 ergs 

kB = 1.38 xl0~16 erg/K-1 

N0 = 6.02x 1023 molecules I mole 

KNF = 6.118 xlO^A/V 

aNF = 6.792 xl07l/cmV1/2 

Conversion Factors 
leV = 1.6xlO-12erg 

lstatV = 300V 

lC = 3xl09esu 

1 mho I m = 9x 10 s 9 „-1 
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U = 107ergs lcal = 4.19J 

leV/molecule = 96.4 kJ/mole 

Parameters for Copper 
Density, p 8.92 gm I cm3 

Electric conductivity, a 5.82xlO7Sim 

Atomic number 29 

Atomic mass 63.55 

Crystal structure Face Centered Cubic 

Interatomic spacing 3.62 Ä 

Oxidation states 1,2 

Conduction electron density 8.450 x 1022 cmT3 

Average work function, 0 4.64 eV 

Free electron Fermi energy, eF 7.09 eV 

Fermi sphere wave number, kF 1.36Ä'1 

Fermi sphere wavelength, XF 4.63 A 

Work function wavenumber, qF 1.10 Ä'1 

Fermi sphere velocity, vF 1.58 x 108 cm I s 

Electronic collision time, tF 24.5 fs 

Electronic mean free path, AF 387.3 Ä 

Thermal conductivity, y 4.01 W/cm °C 

Specific heat, cp 0.385 J/gm °C 

Enthalpy of fusion, AH 208.7 J/gm 

Melting point, tm 1085 °C 

II-A-l-2 



Parameters for Aluminum 
Density, p 2.70 gml cm3 

Conductivity, a 3.55xl07S/m 

Atomic number 13 

Atomic mass 26.98 

Crystal structure Face Centered Cubic 

Interatomic spacing 4.05 Ä 

Oxidation states 1,3 

Electronic density 1.812 xlO23 cm-3 

Average work function, 0 4.28 eV 

Free electron Fermi energy, eF 11.79 eV 

Fermi sphere wave number, kF 1.75k-1 

Fermi sphere wavelength, XF 3.59 A 

Work function wavenumber, qF 1.05 A-1 

Fermi sphere velocity, vF 2.04 x 108 cm 1 s 

Thermal conductivity, y 2.37 W/cm °C 

Specific heat, cp 0.897 J/gm °C 

Enthalpy of fusion, AH 397 J/gm 

Melting point, tm 660 °C 

Parameters for Aluminum Nitride (A1N) 
Density, p 3.23 gm/cm3 

Thermal conductivity, y 

Dielectric constant 

Dielectric loss 

165 W/m2 °C 

8.8 

0.001 

II-A-l-3 



Coefficient of expansion 4.45ppm/°C 

Parameters for Nickel 
Density, p 

Electrical conductivity, o 

Atomic number 

Atomic mass 

Crystal structure 

Interatomic spacing 

Oxidation states 

Average work function, 0 

Free electron Fermi energy, eF 

Fermi sphere wave number, kF 

Fermi sphere wavelength, XF 

Work function wavenumber, qF 

Thermal conductivity, y 

Specific heat, cp 

Enthalpy of fusion, AH 

Melting point, tm 

8.90 gm Icm3 

1.16xl07S/m 

28 

58.7 

Face Centered Cubic 

3.52 A 

2,3 

5.19 eV 

11.7 eV 

1.74 A'1 

3.61 A 

1.16 A-1 

0.907 W/cm °C 

0.444 J/gm °C 

298 J/gm 

1455°C 

Silicon Dioxide 
Energy gap 

Parameters for Intrinsic Silicon 
Electrical conductivity, a 

Band gap, eB 

8.0 eV 

3.846 x1a4 Sim   (@300K) 

1.11 eV 

II-A-l-4 



Electron effective mass, me 0.26 m 

Hole effective mass, mh 0.5 m 

Electron mobility, \it 1350 cm2 IV s 

Hole mobility, ßh 480 cm2 IV s 

Donar ionization energy 49 meV (Arsenic) 

Relative dielectric constant, er 11.7 

Parameters for Insulator Model 
Density, p 1.2gmlcm3 

Electrical conductivity, a l(r14Slm 

Direct band gap, eg 3eV 

Electron effective mass, me 0.166 m 

Hole effective mass, mh 0.264 m 

Relative dielectric constant, er 3 

Thermal conductivity, y 3.79mW/cm°C 

Specific heat, cp 1.34 J/gm °C 

Parameters for Alumina (A1203) 
Density, p 3.7 gmlcm3 

Electrical conductivity, a 10-10Slm 

Relative dielectric constant, er 9.34 

Thermal conductivity, 7 0.30W/cm2C° 

Specific heat, cp 0.7789 J/gm °C 
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Introduction 
Quantum tunnelling varistor devices depend on the highly nonlinear 
characteristic of current versus voltage at metallic interparticle gaps. The 
general theory for the gap characteristic has been previously described.1 

William Alston has voiced concern that variations in material parameters 
will lead to a large disparity in the magnitudes of the currents flowing 
through various paths in the material, providing "hot spots"that contribute 
to device failure. 

An exact analysis of this situation is extremely difficult because of its 
geometry and physics. The purpose of this memorandum is to suggest a 
simplified approach that will give insight as to the nature of the problem 
and serve as an archetypal statistical model for future work. Results 
indicate that Mr. Alston's concerns are valid, and that control of material 
parameters that affect the standard deviations of gap betas is essential for 
reliable device performance. 

Comments Concerning Aluminum 
Theoretical quantum tunnelling calculations performed to date have been 
based on the free electron model of metals. For that reason, copper has 
been used as the archetypal example, since its Fermi surface is nearly 

1 Dutcher, Clinton, "Metallic Quantum Tunnelling Varistor Devices," United States 
Army Harry Diamond Laboratories, Contract No. DAAL02-91-C-0024 (1991). 



spherical. Near term varistor materials are using aluminum as the 
metallic phase. Thus the parameters used in the following calculations 
will be those for aluminum and the following comments should be noted. 

The Fermi surface of aluminum departs substantially from a sphere and is 
fairly complex. However the Fermi energy calculated on the basis of the 
free electron model is in good agreement with that calculated by more 
sophisticated means. In the current density equation, the Fermi energy 
appears only in the factor J0.

2 Small variances in the Fermi energy will not 
lead to large variances in current. 

The major source of variances in device current will come from variances 
in ßd, which will be influenced by variances in the interparticle gaps and 
the work function. The work function is an empirically derived datum and 
will be dependent upon particle coating and polymer interfacial 
chemistries. The value given is one for a chemically pure aluminum 
surface. Nonetheless, the parameters given here are the only available 
estimates and will be used until empirical evidence indicates otherwise. 

The Independent Path Model 
We will assume that current paths can be identified from one electrode to 
another such that no current in one path enters another. That is the 
independent path assumption. In that case, the current paths consist of 
metallic particles and their associated interparticle gaps where each 
carries current associated with that path only. For any path i the voltage 
across a device is then given by 

where Vtj is the voltage across the j-th gap in path i, and n, is the number of 
gaps in path i. The gap voltages are given by 

V;I = ßij ij nnih) 
From the conservation of charge and our independent path assumption, the 
current at any point in the path must be the same as all others. Thus the 
current is independent of j. The parameter in the numerator of the 
logarithm is dependent only on the gap effective area and J0. Variations in 
this parameter will not have strong effects since it is contained in a 
logarithmic function. We will make the further assumption that it is equal 
for all gaps. We may then write. 

For notational definitions, refer to the summary of quantum tunnelling design 
equations. 
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Defining the path ß as 

A-g/>„ wehave V-j^ and        l,.p/t 

Through our assumptions, we have now confined all of the statistics to ßt 

and those statistics can be handled by elementary means. Considering that 
ßi is the parameter that controls the major portion of the nonlinearity, one 
might expect that there is a reasonable degree of validity to the assumptions 
made. 

The Statistical Model 
We will treat ßt as a random variable. It is proportional to the product of g- 
and (<f>ij)3'2 which are the fundamental underlying random variables. 
Without further evidence, the most logical assumption to make is that gr 

and ^ are normally distributed. However, that would considerably 
complicate our analysis. Instead, we will assume ßt is normally distributed 
and return to consideration of the gtj- (^)3/2 product at a later time. 

The current through a device will be given by 

N 

' = 11, 
i=l 

where N is the total number of paths. The current through any one path is 
statistically independent of the others, so the average current through the 
device will be the sum of the means of the individual paths. 

(I) = N{It) 

We have thus reduced the problem to finding the mean and standard 
deviation for /.. To do that we need the probability density function for It. 

Probability Density for 7/ 
The probability density for the current in terms ofthat for ßt is given by3 

Pi(Ii) = Pß(ßi) 
dßt 

dl, 
V   (      I N 

Vln-f =TP> 

3 A result that may be found in any intermediate statistics text. 



where the density function for ßi is given by the Gaussian function 

pM=^mexp ßi-ßo 

V   Gß   ) 

where ß0 is the mean of ßt. 

Numerical Example 
Using the summary design equations, the properties of aluminum, and 
ignoring all that has been said above,4 a device was designed with an 
electrode area of one square millimeter, a thickness of 4 mils, 10 micron 
metallic particles, and the following parameters 

ß = 7.25 x 108 V/cm kF/qF = 1.667 J0 = 7.935 x 1012 

g = 12.5Ä ng = 10 ßd = 906.3 

No attempt was made at optimization. Typical voltages versus current are 

[{V/volts),{I/amps)] = [20,1.66 x 10~9] [30,6 x 10^] [35,0.45] 

[40,11.47] [45,142.1] [50,1.065x 103] 

For such a device, we might say the operational voltage was about 20 V, and 
the clamp voltage about 40 V. 

Our assumption in the past has been that ßt was constant and given by 

ßt = gneß 

For our statistical analysis, we will assume this is the mean value of ßt. 
We will assume there are one hundred particles along each edge of the 
device. Under our other assumptions, this then gives 104 paths and we will 
take the effective area as lCr6 cm2. All of this gives 

fg = 7.935xl06A and ß0 = 906.3 V 

With a standard deviation 10% of the mean, or 90.63 V, the probability 
density for ßt is shown in Fig. 1. With an applied voltage equal to 42.5 V, the 
corresponding probability density for the current is shown in Fig. 2. It has 
a mean value of 0.0341 A. The average current current through devices of 
this type would be 341A at 42.5 V. 

4 What has always been done in the past. 



This is a most unusual probability density requiring a plot on a logarithmic 
scale. The unusual character stems from the unusual nature of the 
quantum tunnelling IV characteristic. We will see that this has 
significant effects that can not be ignored. 
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Fig. 1    Probability density assumed for path ß with a mean of 906.3 V and a standard 
deviation of 90.63 V. 
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Fig. 2   Derived probability density for path current with 42.5 V applied. 
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Thermal Considerations 
In previous work,5 an upper limit on energy handling capabilities was 
derived based on a simplistic model that ignored time frames and lumped 
the thermal properties of the metal and binder together. Here, we will 
make a first refinement of that model under the assumption that the surges 
with which we deal are sufficiently fast that no thermal diffusion takes 
place during the threat event and all of the surge energy is delivered 
uniformly to the metal particles. The end of the surge event then marks 
time zero for thermal diffusion. 

In the previous analysis, it was assumed that thermal destruction of the 
binder was the major contributor to device failure and only a 100 C rise 
from room temperature was allowed. It is reported6 that the silicone 
rubbers being used can withstand much higher temperatures for short 
times such as we are considering here. 

Another potential failure mechanism is the melting of the metal particles, 
and this has been observed.7 The melting point of aluminum is relatively 
low, 633 C. For purposes of further illustration, we will set the maximum 
allowed temperature rise of the metal particles at the aluminum melting 
point but will limit the total energy so the heat of fusion is not supplied. 
Under these conditions, the particles would not actually melt. We will 
assume the path is destroyed if more energy is supplied. 

As an example, we will use the device previously described in this paper 
and assume the volume fraction of metal is 70%. Since the particle 
diameters are 10 microns, lOr3 cm, we will assume the area of each path is 
100 square microns, 10~* cm2. Each path is about 4 mils in length; we will 
take the path length as 10~2 cm, which gives the path volume as lOr* cm3. 
The energy absorbed by the metal for a given rise in temperature is 

AQ = fmVppAcAAT 

where fm is the volume fraction of metal, Vp is the path volume, pA is the 
density of aluminum, cA is the specific heat of aluminum, and AT the 
temperature rise. For a room temperature of 23 C and a final temperature 
of 633 C, the path energy is 15.3 fjJ. This is the maximum energy the path 
will sustain without being destroyed. 

We now want to relate this energy to various types of pulses. To do that we 
use the equivalent time relation8 

5 Dutcher, Clinton, "Quantum Tunnelling Varistor Devices and Their Applications," 
IEEE International Electromagnetic Compatibility Symposium, Anaheim, California 
(1993). 
6 Jerry Behling. 
7 Karen Shrier. 
8 Dutcher, Clinton, "Equivalent Time in Varistor Applications," Integrated Sciences 
Technical Memorandum No. 26 (1993). 
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where Imax is the current at the maximum energy, Emax allowed, Vc is the 
clamp voltage, and teq is the pulse equivalent time. We will assume the 
pulse energy is the 15.3 fjJ calculated above and a clamp voltage of 40 V. 
For an EEC ESD pulse we have a maximum allowed current of 11.25 A and 
for an 8 x 20,18.21 mA. We also want to consider the Harry Diamond test 
system which has an equivalent time of 400 ns. The corresponding 
maximum current is 956.3 mA. 

For a given device not to fail, all of its path currents must be below these 
values. That is where the path current statistics enter. 

Statistical Interpretations 
We are ultimately interested in predicting the failure rate of devices 
produced. That may be done in terms of the probability that a path will 
burn out in a single device and Bernoulli distributions. The Bernoulli 
distribution relates to an event that occurs with probability p and does not 
occur with probability q = 1 -p. Where n is the number of trials and x is the 
number of occurrences of the event, the probability of x occurrences in n 
trials is 

J*J 
p'q" ' 

The probability of failure of a given path is given by 

where IB is the path burnout current. The probability that a given device 
will survive is equal to the probability that there are zero bath burnouts. 
From the Bernoulli distribution this is given by 

PMI-QBY' 

where np is the number of paths in the device. Out of N devices, the average 
number that will survive is given by the Bernoulli average 

Ns = Npd 

These are interpretational relations to be used with the calculations that 
follow. 



Computational Procedure 
For all the computations that follow, we will assume a device with the 
characteristics previously described. We will then determine its power 
handling capability and survivability in terms of the standard deviation of /?, 
and three test waveforms. The waveforms chosen are the IEC ESD at 
15 kV, the Harry Diamond at 3.7 kV, and the 8 x 20 at 500 W. For each of 
these the required device peak currents are: IEC, 56.25 A; Harry Diamond, 
74 A; and 8 x 20, 11.9 A. For each of these, three different standard 
deviations were used. As a percentage of the mean of 906.3 V, they are: 10, 
5 and 1. 

The computational procedure is as follows: 

Pick a test waveform. That determines the required device current at 
the clamp voltage. 

Pick a standard deviation. That determines the probability density for 
ßi and and the form of the probability density for a path current as a 
function of applied voltage. 

Calculate the average device current as a function of applied voltage 
and pick the voltage that gives the average current appropriate for the 
test waveform being considered. That determines the device clamp 
voltage and the probability density function for path current at the 
clamp voltage. 

Calculate the path burnout current for this test waveform.9 

Calculate the probability of burnout for a single path. 

Calculate the probability of device failure. 

For all of the computational steps, computer programs were written. In 
the next section we will give our observations on the probability densities in 
terms of graphs and the IEC waveform. Final results for all of the test 
waveforms are found in the conclusions section. 

In the following observations on probability densities, all of the currents 
shown are single path currents. All average currents are at the IEC value 
of 56.25 A. Changes in standard deviation lead to the observed changes in 
clamp voltages. 

9 For the set of test wave forms under consideration here, we did this on the previous page. 



Observations on Probability Densities 
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Fig. 3 On this scale, the true character of the function is not evident. It is valid for all 
currents to the right of the origin where the graph is visible, but on this scale, what is 
happening in the vicinity of the origin is obscured. 
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Fig. 4 An expanded view of the origin. It is now evident that there is a high concentration 
of probability in the vicinity of the origin. The function is quite broad and the standard 
deviation will be correspondingly large. 
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Fig.   5   Note the increase in the fall of the probability function for this standard deviation. 
More of the probability is now concentrated near the peak value. 
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Fig. 6   The effect is even more evident here. 
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Fig. 8    It is now clear that as we decrease the standard deviation, the skewness of the 
probability density is reduced as well as its standard deviation. 
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Fig. 9   This is more like what we are accustomed to seeing. Further, this is the first graph 
that discloses the full nature of the probability density, including the zero at the origin. 
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Fig. 10 Other curves of interest are the current-probability products, since their integrals 
give the average current. In this case, the peak is far from the average of 5.98 mA. The tail 
is long and rather flat, skewing the distribution toward high currents. 
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Fig. 11   Here we see the situation improving somewhat. 
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Fig. 12 This is still better; however we are still skewed with substantial probability beyond 
the peak and the peak is below the average current of 5.98 mA, indicating the skew is still 
toward the higher currents. 

Conclusions 
What we are observing here will be characteristic of any nonlinear 
multipath device that is suitable for surge protection.10 It will even be true 
for junction diodes. However, the fabrication techniques of semiconductor 
devices has been so refined that it is likely the associated standard 
deviations are relatively small. 

The results of our calculations are summarized in the table on the 
following page. 

10 In particular, MOV's, and may contribute to their unfavorable failure rates. 
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Test 
Waveform 

Standard 
Deviation 

offt 

Required 
Device 
Peak 

Current 

Path 
Burnout 
Current 

Device 
Clamp 
Voltage 

Device 
Average 

Current at 
Clamp 

Device 
Peak 

Power 
at 

Clamp 

Predicted 
Proba- 
bility of 
Failure 

IEC 
10% 
5% 
1% 

56.25 mA 
11.25 

A 
38 V 

41.9 V 
43 V 

59.8 A 
57.5 A 
56.9 A 

2.3 kW 
2.4 kW 
2.4 kW 

6 x 10"2 

3xl0-10 

0 

Harry 
Diamond 

10% 
5% 
1% 

74 A 
956.3 
mA 

38.46 V 
42.43 V 
43.55 V 

74.4 A 
74.3 A 
74.3 A 

2.9 kW 
3.2 kW 
3.2 kW 

.996 
3X10"3 

0 

8x20 5% 
1% 

11.9 A 18.21 
mA 

39.05 V 
40.11 V 

12.9 A 
12.5 A 

504 W 
501W 

1 
0 

Table 1   Calculated results for hypothetical quantum tunnelling varistor device. 

In all cases, the predicted probability of failure for standard deviations of 
10% are unacceptable. 

At 5% standard deviation and an IEC test waveform, the device looks good, 
an indication of why our materials play well in ESD applications. For the 
Harry Diamond test, the predicted probability of failure is marginal,11 and 
for the 8x20 500 W, the device is certain to fail. 

With a 1% standard deviation, the device survives all of the test waveforms. 

Multipath devices will survive best in circumstances where the equivalent 
times are short. That follows from the fact that the required device burnout 
current is inversely proportional to the equivalent time. The effect is 
reflected in the above table. This is also true of the clamp voltage. 
Multipath devices will be favored in applications with high clamp voltages 
and short equivalent times. 

In the past, it was observed that clamp voltages were generally lower than 
those predicted by theory. This was considered as a microscopic parameter 
effect and was referred to as beta reduction. Since the effects of the 
statistics tend to decrease clamp voltages with respect to those based on a 
nonstatistical model, it is now apparent that the effect may also be 

11 Was I lucky? 
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influenced by the material statistics both on a macroscopic as well as a 
microscopic level. 

In the past, it has been assumed that simply increasing the volume of 
material would increase the device power handling capabilities. The 
clamping voltage is related to the thickness of material between the 
electrodes and the size of the metallic particles. If we leave those fixed, the 
only way we can increase the volume is to increase the electrode area. This 
reduces the mean of the path probability density, which moves in the 
direction of reducing the probability of path burnout. However, it also 
increases the number of paths, which moves in the direction of reducing 
the probability of device survival. Increasing the area is likely to increase 
the power handling capability. If it does, it will not be as effective as 
previously thought. 

We have brought the analysis to the point where a number of significant 
matters are now apparent. It was not carried further because the 
statistical model is critically dependent upon the gap IV characteristic, for 
which we do not have a good model in the absence of any estimates of 
avalanche effects. 

Recommendations 
A statistical model such as described here should be incorporated in the 
computer aided design package. 

An analysis of the avalanche effects needs to be completed and incorporated 
with our knowledge of quantum tunnelling. 

We need to complete our materials test system and use it to establish 
parameters that enter into the analytical model. 

For test waveforms with long equivalent times, we need a macroscopic 
thermal analysis. It may be that there are some ameliorating effects on the 
path burnout current produced by heat flow. We need to quantify this. 

In the light of results from the above, refine the present statistical analysis 
and bring it to the point that it is a useful predictive tool. 

Once we have a better handle on the true gap IV characteristic, we also 
need to consider performance statistics as well as failure statistics. 

The effects of increasing electrode area to obtain higher power handling 
capabilities needs investigation. 
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Appendix II-A-3 

ORIGINAL PROBLEM DEFINITION 

Introduction 
In the following table we compare some of characteristics of metallic 
tunnelling devices to those of conventional devices. 

Table 1 

METALLIC TUNNELLING DEVICES COMPARED TO CONVENTIONAL DEVICES 

Metallic Tunnelling Devices 
• Response times are dominated by 
metallic relaxation times (= 100 fs). 
Device time constants are independent of 
the gap width. There is no substantial 
heating in the gaps, so device reliability is 
relatively independent of gap width. 

• Quantum tunnelling conduction is a 
monotonically increasing function of the 
applied voltage. There are no leading 
edge over-shoots for either fast or slow 
pulses. 

• Electron-phonon interactions in the gaps 
are minimal. The gaps are not the domin- 
ant heat sources. 

• The dominant failure mechanism is 
melting of the metallic particles which 
requires a higher temperature than the 
failure of a semiconductor junction. 

• Heat generated in the metallic particles 
is generated in that constituent with the 
highest thermal conductivity. Heat 
dissipation is enhanced. 

• Quantum tunnelling has no first order 
temperature dependence. Temperature 
stability is enhanced. 

Conventional Devices 
• Response times are dominated by 
semiconductor junction diffusion times. 
Device time constants are dependent on 
junction widths. To accommodate fast 
rise times, the junctions must be made 
small which compromises device 
reliability. 

• In some circumstances, conventional 
devices require a leading edge initiation. 
The slower the pulse rise time, the higher 
the energy content of the leading edge 
spike. 

• Electron-phonon interactions are 
dominant in the semiconductor junc- 
tions. The semiconductor junctions are 
the dominant heat sources. 

• The dominant failure mechanism is 
semiconductor junction burnout which 
requires a lower temperature than the 
melting of metallic particles. 

• Heat generated in the semiconductor 
junctions is generated in that constituent 
with the least thermal conductivity. Heat 
dissipation is impeded. 

• Diffusion is exponentially dependent 
on temperature. Temperature stability is 
degraded. 

Recently, materials have been developed ostensibly based on metallic tun- 
nelling phenomena. As can be seen from the table and will be further 
illustrated in the following subsections, materials operating in the metallic 
tunnelling regime have characteristics that are entirely different from 
those of conventional type materials. These characteristics are well suited 
for applications involving surge suppression of high power pulses with 
subnanosecond risetimes. 
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However, no information has been found that implies that any of the 
presently available materials are truly operating in the metallic tunnelling 
regime. Although there are strong indications in the very early literature 
concerning this matter [1-11], it appears that the material manufacturers 
have not had a means to determine whether or not the tunnelling regime 
has been realized. 

In the discussion of the application of varistors to the protection of 
electronic equipment, there are two important aspects that need to be 
considered. The first is how the material affects system operation under 
non-threat conditions, and the second is how the material behaves under 
threat conditions. For this proposal, it will be assumed that the varistor 
element is to be an integral part of the transmission line leading from a 
receiving antenna to the receiver electronics. Thus the varistor material 
will be interior to the transmission line and will act as a propagating 
medium with a given complex permittivity and complex permeability in the 
non-threat condition. 

For production of suitable surge arresting devices, it is necessary to know 
the values of the complex permittivity and complex permeability and how 
they affect device performance. During the execution of the proposed pro- 
ject, guidelines will be given for the measurement of these parameters and 
their use in device design. The samples supplied will be configured so that 
these parameters are easily measured with currently available laboratory 
instrumentation. In this section, we will concentrate on those aspects that 
affect performance in the threat condition. 

In the proposed project, we will either verify, or modify as necessary, an 
empirical quantum tunnelling signature indicated in the earlier literature. 
This activity will simultaneously provide guidelines for selecting material 
parameters that will lead to materials operating in the metallic tunnelling 
regime. 

Using these guidelines we will fabricate prototype samples of varistor 
devices, subject them to laboratory tests, and compare the results to 
theoretical predictions, specifically, to the metallic tunnelling empirical 
signature. The following paragraphs summarize previous theoretical 
work that is part of the foundation on which we base our conclusions. 

Qualitative Description and Assumptions 
The classes of materials with which we will be concerned here are those 
that consist of small metal and semiconductor particles embedded in a 
polymeric matrix. In our analyses, we will always take the simplest 
physical model that is consistent with empirical data. For the particular 
class of materials in which we are specifically interested, if 
semiconducting particles are introduced, it is likely that their purpose will 
only be to provide some form of current limiting. The function of the 
polymeric binder is simply to hold the material together. The effects of the 
semiconductors, if needed, and the binder will be considered in the 
proposed effort, but in what follows, we wish to concentrate on the metallic 
tunnelling phenomenon per se.    Thus, to simplify the discussion and 
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illustrate the general concepts and results, we will consider the quantum 
tunnelling of electrons through a vacuum gap, in planar geometry, from 
one piece of metal to another. 

First Conduction Model 
Our model will consider planar geometry with layers of metal separated by 
layers of dielectric, as shown in Fig. 1. 

Fig. 1 Surge arresting device configured in planar geometry. The white layers represent 
metal and the shaded layers dielectric. Note that the thicknesses of the metal and 
dielectric layers are variable. In an actual device, there would be many more layers than 
depicted here. 

With no applied potential difference across the end faces, a first 
approximation to the potential profile seen by a free electron interior to the 
device is that shown in Fig. 2. 

In solid state physics, this model corresponds to the free electron theory of 
metals [12] where eFis the Fermi energy and ty is the metal work function. 
When there is an applied voltage the electrical stress across each of the 
metal layers is the same as for each of the other layers. This allows us to 
consider the situation associated with only one of the metal layers, leading 
to the picture shown in Fig. 3. 

From Fig. 3, it appears that the electric field inside the metal is zero. This 
is not strictly true; however, the interior field is so small in comparison to 
the exterior field that it is not discernible on the scale depicted here. 

U(z) 

I 
..e* 

f 
Fig. 2 Potential energy profile for a surge arresting device in a layered geometry with no 
applied field. The shaded areas indicate the presence of dielectric while the unshaded 
areas represent the presence of metal. 
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U(z) 

e -- 

Fig. 3 Potential in the vicinity of a single metallic layer as modified by an applied electric 
field. The energy e represents the energy of any specific electron under consideration. 

In this first conduction model, we assume that the dielectric layers are so 
thin that they essentially act only as separators between the metallic layers 
and otherwise do not impede electron flow. We further assume that when 
an electron enters from the left, that it comes to thermal equilibrium with 
the rest of the electrons in the metal before it arrives at the right hand 
boundary. This implies that the right hand boundary is the major factor in 
impeding electron flow. Thus, it is at this boundary that we need to analyze 
tunnelling effects. 

Stating the assumptions somewhat differently, the electron is accelerated 
in the dielectric regions and moves through the metal according to normal 
conduction transport. Since we are concerned about very short transients, 
the assumption concerning relaxation to electronic thermal equilibrium 
may come into question. Although there is some controversy concerning 
the exact electronic relaxation mechanisms in metals [18], it is generally 
accepted that the relaxation times are on the order of 100 fs. This is a major 
reason for expecting metallic tunnelling varistors to have exceptionally fast 
risetimes. 

As we shall see, even for kA currents, the drift velocities of the current 
carrying electrons is extremely slow so that they spend times much longer 
than the electronic relaxation time interior to a metallic constituent. We 
also note that the electrons with which we are concerned must thermalize 
with respect to the other electrons, not the ionic lattice where the 
relaxations times may be much longer than the electronic relaxation times. 
The lattice relaxation times may become important when we investigate the 
thermal aspects that need consideration when analyzing failure 
mechanisms. 

The other thing we note here is that since a large current density can be 
transported by electrons in metals moving at slow velocities, even for large 
current densities, the thermal equilibrium of the conduction electrons is 
not much disturbed. This is a key point in our treatment, and we will 
strengthen the argument when we later investigate the typical electron 
energies at the Fermi surface. 
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Since we have assumed ourselves into the position that the right hand 
boundary is the major impediment to conduction through our layered 
structure, we need to determine how to treat conduction at that boundary. 
First we note that even for the small particle sizes used in varistor 
materials, the particles are large in terms of things the size of electrons. 
Thus we will look at the details of matters close to the boundary and ignore 
what is going on far from the boundary. This is in keeping with our 
assumption of near thermal equilibrium and the fact that conduction 
electron correlation lengths in metals at normal temperatures are typically 
measured in terms of atomic spacings. 

Near the boundary, the potential profile may be depicted as shown in Fig. 4. 
The width of the barrier at energy e is denned to be 2a, where the factor of 
two is included to match later notation. The effect of increasing the field is 
to decrease the width but does not alter the height of the barrier. In the 
barrier region, the potential of an electron of charge e and a gap field Eg is 
given by 

U(z) = Ub-eEgz 

Thus, the barrier width is given by 

A potential such as this is the one we would like to work with at this point. 
The resultant differential equation would have non-constant coefficients. 
However, the most important features of this potential profile are the 
barrier height and width. Thus we will replace the potential above with one 
that has the same height and width but is in the form of a pulse as shown 
in Fig. 5. 

Fig. 4 Potential as seen at the right hand boundary of one of the metallic slabs. The width 
2a will be related to our subsequent simplified model and the factor of two is included here 
for later notational convenience. Ub is the potential barrier height. 
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uk 

Region 1 

Fig. 5   Potential barrier with simpler analytic properties than those of Fig. 4. 
potential profile will be referred to as the symmetric wall barrier (SWB). 

This 

It is expected that the qualitative aspects of the tunnelling phenomenon are 
relatively independent of the exact details of the potential barrier. In 
particular, we are concerned here with the gross functional dependence 
and intend to match parameters to empirical data. Thus for preliminary 
analysis, we will use the potential profile of Fig. 5. 

Summarizing, our conduction model will be viewed in the following way 
In zero applied field, the potential profile is that of Fig. 2.  The conduction 
electrons in the metal are at thermal equilibrium and there are as many 
electrons travelling to the left as to the right. The net current flow is zero. 

In the presence of an applied field, the potential profile is that of Fig. 3. If it 
is a modest field, so that no appreciable tunnelling takes place, the metal 
simply becomes polarized in such a way that the net field in the metal is 
zero. The polarization field that reduces the external applied field to zero in 
the interior of the metal is produced by the surface polarization charges 
that appear on the metal left and right surfaces. The electrons in the 
interior of the metal are again found in thermal equilibrium with no net 
current flow. 

Next let us suppose that we increase the field strength so that some 
tunnelling takes place at the right hand boundary. We will assume here 
(and we will justify the assumption later) that the amount of tunnelling is 
not sufficient to appreciably disrupt the thermal equilibrium of the 
electrons interior to the metal. 

Now here are the key points. Under the conditions described above, the 
number of electrons striking either the right or left boundary of the metal is 
given by the equilibrium statistics of the electrons interior to the metal. 
There is no net transmission to the left because the potential is rising there 
and, it only takes a flat potential to guarantee zero transmission (c.f, 
Wichmann [15, p. 284]. Since the slope of the potential profile on the left 
hand side is always negative, electrons readily enter the region of the metal 
where they come to thermal equilibrium with the rest of the conduction 
electrons. On the right hand side, they tunnel through the potential 
barrier. The net current is given by the product of the barrier transmission 
coefficient and the number of electrons per unit time striking the barrier, 
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this latter number being given by the equilibrium statistics of the electrons 
interior to the metal. To simplify the mathematics of the situation, we 
replace the potential profile of Fig. 4 with the one of Fig. 5 in such a way 
that it has the same width at energy e and the same height as the profile of 
Fig. 4. 

We shall refer to the profile of Fig. 5 as the symmetric wall barrier (SWB). 
In the next section, we will calculate the transmission coefficient for the 
SWB. This will subsequently be combined with the free electron theory of 
metals to obtain our first estimate of tunnelling conduction. 

Particle in a Layered Potential 
We first consider the case of a particle whose potential energy consists of 
layers where the potential in each layer is constant as described in the 
previous Subsection. The Schroedinger equation for such a particle is given 
by 

- -— V2 (|> + U(r )<b = e<b  where 
2m 

h = Planck's constant divided by 2rc, m = particle mass, 
<(> = wave function, e = particle total energy, r = particle position vector 

We will take the z-direction as perpendicular to the potential layers. Thus <)) 
is a function of x, y, and z and we take U as a function of z alone. 
Assuming <|) is a product of three factors, each of which is dependent on 
only one of the coordinates, the equation may be separated, the z- 
dependence being given by 

—Y + U(z)\j/ = e2\)/   where 
2m 9z2 

ez = the energy associated with the z- component of motion 

\|/ = the z - factor of the wave function product 

It is this component of motion with which we will be concerned. What we 
have done here is to reduce the three dimensional problem for this layered 
geometry to a one dimensional case. 

Before proceeding, we need to think a little more about the assumptions we 
are making. Assuming that the potential is a function of z alone is 
equivalent to assuming our sample is infinite in extent in the x and y 
directions. By separating the original equation the way we have, we have 
tacitly assumed that the particle energy is composed of three parts, one 
associated with the z-direction and two with the other degrees of freedom. 
With the potential assumed, the energies associated with each degree of 
freedom are noninteracting. Thus we have assumed that there is no 
scattering. 
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For the z-component of motion, the solution is a standard boundary value 
problem. We take the potential of Fig. 5. For each region shown, we have 
free particle wave functions. Assuming unity flux of particles from the left, 
the wave functions can be written in the forms 

\|/i = e   +Ae ,-ikz v2= = Be< Z + Ce_qz 
¥3 = 

_ V2mez 
h 

V2m(Ub- 
q=          H 

-0 

De ikz with 

The boundary conditions on the wave function are that it must be 
continuous and its derivative must be continuous. This leads to four 
simultaneous equations for the constants A, B, C, and D. In matrix form 
these are 

eika 

0 

-ikeika 

0 

-e -qa -e qa 

*1a 

-qe'qa 

-qa 

qa 

qe qa 
qe' 

-qe"qa 

0 "A' "  _e-ika  " 

-eika B 0 
0 C -ike"ika 

-ikeika. D 0 

This system may be solved by determinants. The easiest way to proceed is to 
use row and column operations [16]. The transmission coefficient is the 
ratio of the particle flux in Region 3 to the incoming flux and is given by 

T = 
(2kq)2 

[(k2 - q2)sinh(2qa)] + [2kqcosh(2qa)]2 

First Transmission Estimate 
As we shall see later, to get accurate results concerning the current flows 
in tunnelling devices, an integration of the product of the transmission 
function and the incident current densities is required. An estimate for the 
incident current density will be obtained in the following subsection. At 
this point we would like to obtain a first estimate for the transmission 
function. 

For this purpose, we assume all of the incident electrons have energies 
equivalent to the nickel free electron Fermi sphere. For a gap field of 107 

V/cm, the transmission function has a value of 1.7 x 10"52. For 108 V/cm, 
the transmission function has a value of 2.0 x 10'5. The major point to note 
here is that for a one order of magnitude change in applied voltage the 
transmission function has changed by forty seven orders of magnitude. We 
also discern that if any substantial current is to flow through the device, the 
current density incident upon the potential barrier must be correspondingly 
high. The fact that it is, is an important result of the following subsection. 

Implications of the Free Electron Model 
Our purpose in this subsection is to summarize some of the results of the 
free electron model of metals and to make a number of order of magnitude 
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calculations that support the assumptions we have made. Our main 
reference here is the text by Kittel [12]. 

The basic premise of the free electron model of metals is that for each 
electron in the metal, the potential that it sees is essentially of the type 
shown in Fig. 2. The corresponding wave functions can be represented as 
standing waves in terms of sines and cosines or, if periodic boundary 
conditions are used, in terms of free particle exponentials.  , — — — — —       — —   —   —.       |>v»    v—w^v 

In either case, the energy levels are given by 

h2k2 

e = ——   where   k = the electron wave number, m = the electron mass 
Am 

The electron is a spin 1/2 particle and therefore obeys Fermi Dirac statistics 
and the Pauli exclusion principle applies. Thus, when filling the available 
energy levels with electrons, two electrons are permitted for each allowed 
value of k. At the absolute zero of temperature, the lower energy levels will 
be occupied first, with successive electrons being added at higher energies 
until all of the electrons are accommodated. The energy level at which the 
last electrons are placed is referred to as the Fermi energy which we have 
denoted by ep. 

From the equation for e above, we note that in the space of k, the various 
energy levels are represented by spheres and the sphere that corresponds to 
the Fermi energy is often called the Fermi sphere or Fermi surface. It is 
well known [12] that when the temperature is raised to the vicinity of room 
temperature, the distribution of the electron states in k-space is not much 
altered from the absolute zero form. 

The density of states, the number of allowed states in the energy range 
between e and e + de, is given by [12] 

3 

dN(e) = 7~21 "IT   Ve de    where V = the sample volume 

This is basically all we need to know about the free electron theory of metals 
to pursue our present goals in regard to tunnelling conduction. 

Electron Velocities 
For the examples that follow, parameters appropriate for the metal nickel 
will be used. The parameters of other metals are of the same order of 
magnitude and for the present, we are mainly interested in order of 
magnitude estimates. The relation between the kinetic energy of a particle 
and its velocity is 
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The Fermi energy of nickel is 11.7 eV. For an electron at the Fermi energy, 
this corresponds to a velocity of 2.02 Mm/s. We note that this is only two 
orders of magnitude below the velocity of light. 

Conduction Electron Drift Velocities 
It is an elementary physics problem to calculate the drift velocity required to 
yield a given current in a wire. For a one quarter inch diameter wire 
carrying 1 kA of current, the velocities are found to be on the order of 1 
mm/s. Thus, even for a 1 kA current, the required drift velocities are 
miniscule in comparison to the velocities of the electrons at the Fermi 
surface. 

This proves our contention that the equilibrium distribution of the velocities 
is not much disturbed by the presence of applied fields of the order of 
magnitude with which we are concerned. 

Free Electron Current Densities 
Let us consider a cube of metal and find the current density of the internal 
electrons that impinge on a face of the cube. If dJj is the current density 
caused by incident electrons with energies between e and e+de, we have 

,,    dN(e)     , >    2me   , , 
°*>i =    T7-   ev(ej = -j-jede    where    e = the electronic charge 

V 7C n 

Since, at normal temperatures, there are few electrons outside the Fermi 
sphere, we have to good approximation, 

,     2me f6*,      meet 
K n Jo K n 

However, recall that the velocity that appears in the expression for kinetic 
energy has three components. Thus for this reason, the above expression 
should be reduced by the square root of three. In addition, for any velocity 
component, half of the particles are travelling away from the corresponding 
cube surface. Thus, the expression should be reduced by another factor of 
two. As a final result we find 

T       me£p 
i_7u2fc32V3 

When the parameters for nickel are substituted into this expression, we 
find Jj = 1.25 TA/cm2. That is indeed a substantial current density! 

When combined with the estimate for the transmission function found in 
the previous section, for a gap field of 107 V/cm, we obtain a current density 
through the device of 2.13 x 10"40 A, essentially zero. For a gap field of 108 

V/cm, the current is 25 MA. 

Hie Fundamental Conduction Equation 
We have now come far enough with our model that we can very simply 
write the expression for the current density in the following form. 
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J=\ji(e)T(e)d£     where 
Jo 

J.(e) = the metallic electron current density at a metal dielectric interface 
where the incident electrons have energy e. 

T(e) = interface potential barrier transmission coefficient. 

This is our fundamental equation for the static case. 

We next want to write this equation for the case where we assume the 
symmetric wall barrier and the free electron model. We then have 

J = .   em 

7t2ft3V3 
jeT(e)de 

In this type of application, the free electron model of metals generally 
serves as an excellent approximation. If future modifications of the theory 
are to take place, it is likely that they will be associated with the 
transmission coefficient T(e) or the inclusion of some other factor not 
presently taken into account. Thus, we will refer to the above equation as 
the fundamental conduction equation. 

The estimates previously obtained for the expected current densities appear 
quite reasonable. However, no attempt has yet been made to carry out the 
indicated integration of the fundamental conduction equation. That will be 
the topic of the next subsection. 

Reduction of the Conduction Equation to Integrable Form 
It does not appear that an analytic integration is possible. For purposes of 
numerical integration, we recast the equations in the following manner. 

J = K0JeT(e)de     with     K0 = 1833 x 1010 A/cm2 (eV)2 

T(e) = - (2k/q)2 

{[(k/q)2 - l]sinh(2qa)}2 + {(2k/q)cosh(2qa)}2 

k    (    -    V* 

q vUb-eJ H      E 2qa = 5i(Ub - e)3/2 K, = 5.094 x 107 V/cm (eV)3/2 

Stating the units explicitly, the energies in the above equations are 
expressed in eV and the field strength in V/cm. The current densitv is in 
A/cm2. 

To obtain some insight into what the results will indicate, before 
performing the integration, we explored the properties of the integrand 
with the characteristic result that is typical of physical effects depending on 
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the electron dynamics in metals. That is, the major effects are contributed 
by electrons whose energies are close to the Fermi energy. 

We found by direct calculation that there is no significant contribution from 
electrons with energies below about 10 eV. In future integrations, we will 
set the lower limit of integration to 8 eV. Further, at gap fields at and above 
100 MV/cm, the current densities are so high that no material could 
sustain them. The latter means that the lowest significant value of the 2qa 
product is about 6.02. These are the keys to simplifying the expression for 
the current density. 

Simplified Expression for the Current Density 
At and above the value of 2qa equal to 6.023, we have the approximate 
relation 

sinh(2qa) s cosh(2qa) = -e2qa 

With this given, the transmission coefficient can be written in the form 

4(k/q) 
T(e) = 

(k/q)"+l 
e-4qa 

In the conduction integral, the variable of integration is the electron energy 
and the value of the integral is a function of the gap field E. Writing this 
explicitly, we have 

J(E) = K0f 
Jo 

4[k(B)/q(e)l   l    -(E)a 

[[k(e)/q(e)]2 + lj 
e~*qwa de 

Even with this simplification, it still does not appear that an analytic 
integration is possible. Thus, to get a global picture of the general behavior 
of the current density as a function of gap field, a computer program was 
written that evaluates the above integral for twenty points over the gap-field 
domain of 10 to 100 MV/cm. The result is shown in Fig. 6. 

Because of the current levels involved, for surge arresting devices, the 
interesting gap-field domain is between 50 and 80 MV/cm. This domain is 
shown in both semi-log and linear forms in Fig. 7. For a change in the gap 
field by a factor of 1.6, the current density changes by five orders of 
magnitude. 

Approximation to the Conduction Integral 
For any given value of E, the mean value theorem of integral calculus [19] 
states that there is a value em of e such that 

J(E) = K0eFemT(em) 

In general, there will be a different value for em for each value of E. 
However, recall that the main contributions to the conduction integral 
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occur over rather restricted domains of both e and E. Thus, we might 
expect that the last equation would provide a practical approximation for 
the field dependence of the current density over the domain of E necessary 
for characterizing tunneling devices. In this case, the current density 
would be given by 

Ja(E) = J0e"E     where     Jo = K0eme ß = 2K1(Ub-em) 3/2 

4 5 6 7 8 9 10 
Gap Field/V/cm X107 

Fig. 6 Global picture of the behavior of the current density as a function of gap field. 

and the k and q in J„ are evaluated for e = em. The subscript "a" indicates 
that this is an approximation. 

Thus in characterizing tunnelling devices, we can regard J0 and ß as 
parameters to be empirically determined, with the above expressions, at 
least, giving the correct orders of magnitude. In general, it is expected that 
the value of em would be fairly close to the Fermi energy. A comparison of Ja 

and the values of J previously obtained by integrating the conduction 
integral is shown in Fig. 8. The value of em, 11.0 eV, used in producing this 
figure was obtained by matching the values of J and Ja, approximately in 
the center of the domain of interest. 

Since Ub is the sum of the work function and the Fermi energy, the order of 
ß is given by 

ß = 2K1())3/2=109 

From the above, we see a major difference between conventional solid state 
diode devices and metallic tunnelling devices. For the current in a 
conventional device, an approximation often used is 

I = I0(e
aV-l)     where     a = 

kT 
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Fig. 7   Semi-log and linear plots of the current density over the range of interest for surge 
arresting devices. 
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Fig. 8 Comparison of J obtained by integration of the conduction integral to the 
approximation Ja. Ja is the lower curve at the left of the graph and the higher curve at the 
right of the graph. 
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I0 is the reverse bias current, k is Boltzmann's constant, and T is the 
absolute temperature. Like our results, the last equation is derived on the 
basis of a rather simple first order model. The first thing we note is that the 
functional dependence for conventional devices is entirely different than 
that for tunnelling devices. 

The second thing we note is the explicit appearance of the temperature in 
the equation for conventional devices. In a more sophisticated model, the 
temperature might play a role in metallic tunnelling devices, but it appears 
that it is, at most, a second order effect rather than the first order effect of 
conventional devices. The implication here is that it is likely that metallic 
tunnelling devices will be more stable with respect to temperature than 
conventional devices. 

The final thing we note is that for all types of devices, on a linear plot of 
current versus voltage in the application range, the curve must be concave 
up. On a log-linear plot the curves for conventional devices are also concave 
up. However, for tunnelling devices, the plots are concave down, as 
displayed in Fig. 7. This is the tunnelling signature alluded to in our 
previous comments. 

Concluding Remarks 
Our approach has been elementary with many simplifying assumptions. 
However, the failure of material manufacturers to meet specific goals 
indicates that some manufacturers may have a lack of knowledge of the 
fundamental physics of the problem, not only in regard to materials, but 
also with regard to how the materials interact with the structures required 
for incorporation into practical devices. For example, there is a tendency to 
think in terms of dc without adequate attention being given to the fact that 
the electromagnetic interactions are taking place in a transmission line 
environment. 

Of mechanisms available for the production of nonlinear effects in varistor 
materials, metallic quantum tunnelling offers potential advantages not 
present in other mechanisms. However, there is no evidence that a 
metallic tunnelling varistor device has yet been produced. Thus, further 
theoretical and experimental work is needed in regard to metallic 
quantum tunnelling. 

The fundamental theory presented here gives a qualitative picture of what 
may be expected and forms the basis for further work. It needs to be 
expanded to more correctly account for factors ignored through the 
simplifying assumptions. In addition, analysis is needed in regard to how 
the materials interact with device structures. These two topics constitute a 
major portion of the proposed effort. 

References 
1. C. Davisson and L. H. Germer, Phys. Rev., 20, 300 (1922); 30, 634 (1927). 
2. G. M. Fleming and J. E. Henderson, Phys. Rev., 58, 887 (1940). 
3. W. Schottky, Physik Z., 15, 872, (1914). 
4. J. Bardeen, Phys. Rev., 49, 653 (1936); 58, 727 (1940). 
5. W. B. Nottingham, Phys. Rev., 47, 806 (1935); 58, 927 (1940). 
6. R. H. Fowler and L. Nordheim, Proc. Roy. Soc. (London), 119A, 173 (1928). 

II-A-3-15 



II-A-3   Original Problem Definition 

7. R. Haefer, Z. Physik, 116, 604 (1940). 
8. L. W. Nordheim, Proc. Roy. Soc. (London), 121, 626 (1928). 
9. L. A. MacColl, Phys. Rev., 56, 699 (1939). 
10. C. Herring and M. H. Nichols, Revs. Mod. Phys., 21, 185, (1949). 
11. J. B. Taylor and I. Langmuir, Phys. Rev., 44, 423 (1933). 
12. Kittel, Charles, "Introduction to Solid State Physics," Sixth Edition, John Wiley & 
Sons, New York (1986). 
13. Jackson, J. D., "Classical Electrodynamics," Second Edition, John Wiley & Sons, 
New York (1975). 
14. Dirac, P. A. M., "The Principals of Quantum Mechanics," Oxford University 
Press, New York (1958). 
15. Wichmann, E. H., "Quantum Physics," Berkeley Physics Course, Vol. 4, McGraw 
Hill Book Company, New York (1971). 
16. Strang, Gilbert, "Linear Algebra and Its Applications," Third Edition, Harcourt 
Brace Jovanovich, San Diego (1988). 
17. Chester, Marvin, "Primer of Quantum Mechanics," John Wiley & Sons, New 
York (1987). 
18. Bochove, E. J., and Walkup, J. F., "A Communication on Electrical Charge 
Relaxation in Metals," American Journal of Physics, Vol. 58, No. 2 (1990). 
19. Thomas, G. B, "Calculus and Analytic Geometry," Alternate Edition, John Wiley 
& Sons, New York (1972). 

II-A-3-16 



II-R 

REFERENCES 



SELECTED BIBLIOGRAPHY 

[I] Hyatt, H. M.; Shrier, K. P., "Electrical Overstress Pulse Protection 
Material and Process,"    U. S. Patent 4, 726, 991 (1988). 

[2] Dutcher, Clinton, "Metallic Quantum Tunnelling Varistor Devices, 
Phase I," United States Army Harry Diamond Laboratories, Contract No. 
DAAL02-91-C-0024 (August 1991). 

[3]    O'Dwyer, J. J., IEEE Trans. Elec. Ins., 1084, EI-9, pp. 1-9. 

[4] Lampert, M. A., "Injection Currents in Solids," Academic Press, New 
York (1965). 

[5] Simmons, J. G., "Schottky Injection," Phys. Rev., 1967, 155(3), pp. 657- 
659. 

[6] Hikita, M.; Nagao, M.; Sawa, G., Ieda, M„ "Thermal Breakdown," J. 
Phys. D., Appl. Phys. 1980, EI-15, pp 206-224. 

[7]    Klein, N., "Avalanche," Adv. Phys., 1972, 21, pp. 605-645. 

[8]    Klein, N., "Avalanche," J. Appl. Phys., 1982, 53, pp. 5828-5839. 

[9]    Mayoux, C. J., IEEE Trans. Elec. Insul., 1976, EI-11, pp.153-158. 

[10] Joncher, A. K; Lacoste, R., IEEE Trans. Elec. Insul., 1984, EI-19, pp. 
567-577. 

[II] Dutcher, Clinton, "Statistical Effects on the Failure Mechanisms of 
Quantum Tunnelling Varistor Devices," Technical Memorandum, Oryx 
Technology Corporation, Fremont, CA. (1993). 

[12] Nordheim, L.; Fowler, R. H., "Electron Emission in Intense Electric 
Fields, "Royal Society Proceedings," Volume 119 (1928). 

[13] Kittel, Charles, "Introduction to Solid State Physics," Sixth Edition, 
John Wiley & Sons, New York (1986). 

[14] Dutcher, Clinton, "Equivalent Time in Varistor Applications," ITEM, 
The International Journal of EMC, Robar Enterprises, Conshohocken, PA 
(1994). 

[15] Spanier, Jerome; Oldham, Keith B., "An Atlas of Functions," 
Hemisphere Publishing Company, New York (1987). 



II-R   References 

[16] Solymar, L. and Walsh, D., "Lectures on the Electrical Properties of 
Materials," Oxford University Press, New York (1993). 

[17] Dissado, L. A., and Fothergill, J. C, "Electrical Degradation and 
Breakdown in Polymers," Peter Perigrinus, Ltd., London (1992). 

[18] Fischer, P., and Nissan, K. W., IEEE Transactions on Electrical 
Insulation, EI-11(2) (1976). 

[19] Böhm, David, "Quantum Theory," Prentice-Hall, New Jersey (1951). 

[20] Dutcher, Clinton, "Vector Space Quantum Formalism," Integrated 
Sciences™, in preparation for publication (1996). 

[21] Chambers, R. G., Proc. Phys. Soc. London, vol. 65A, (1952). 

[22] Stratton, R.: Progr. Dielectrics, 1957, 3, pp. 235-292. 

[23] Goodman, B., Lawson, A. W., and Schiff, L. I.: Phys. Rev. 1947, 71(3), 
pp. 191-194. 

[24] Frölich, H.,: Proc. Roy. Soc, London, 1937, A160, pp. 230-241. 

2/17/97 12:35 Ü-R-2 



SECTION III-l 

APPLICATION OF FINITE ELEMENT ANALYSIS 
IN QUANTUM PHYSICAL MODELS 

III-l-l Background 
The use of finite element modelling in these electronic solid state analyses is an 
unusual, and probably a unique, application of an engineering discipline developed 
for continuum mechanics. It would be quite correct to suggest that such an applica- 
tion, if taking a traditional finite element approach, would have limited value. 
However, the distinct departure from tradition introduced below and developed in 
some detail in the following sections will be shown for the first time to accurately 
characterize chaotic failure mechanisms of solid state materials. 

The quantum, electrical and thermal analyses presented in Part II are based on local 
calculations. That is, the mathematics necessarily apply to a small, idealized control 
volume. The control volume may be represented by a single gap between conductive 
particles, across which tunnelling or other conducting phenomena may occur. From 
such simple constructs, overall behavior of a macroscopic system may be inferred. 
Solutions involving single-electron tunnelling across a gap can provide insight 
regarding material constituents to be used, idealized gap spacing, and total material 
thickness between electrodes. 

While the above local approach is essential, it is also incomplete. For instance, it was 
observed that with these voltage gradient sensitive materials the primary mode of 
failure is of a chaotic, dominant path nature. Current is not conducted uniformly be- 
tween electrodes but instead forms filaments of extremely high current density which 
in turn cause overheating and material degradation. These filaments cannot be pre- 
dicted from inferences made from local calculations alone. 

Continuum mechanical solutions based on local relationships likewise cannot predict 
dominant path failure. One technique already attempted is to apply the local expres- 
sions regarding current density vs. temperature and voltage gradient in a traditional 
application of the finite element method. Each subdomain, or element, within the 
continuum is allowed to conduct current according to those expressions. In such 
analyses the predicted current density in material subjected to high voltage transients 
between parallel electrodes is uniform, thereby departing from observation. If 
predictions do not agree with measurement, then there is a significant mechanism for 
which the predicting methods do not account. This failure to predict requires a 
careful review of those mechanisms. 

Dominant path phenomena are in part caused by the unstable nature of the materials. 
Through a combination of quantum tunnelling and regenerative avalanche, small 
changes in local voltage gradients result in very large changes in local current 
density. However, it can be shown that chaotic, dominant path phenomena cannot be 
brought about by material instability alone. 
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The other condition necessary for dominant path failure in materials addressed by 
high voltage transients across parallel electrodes is material non-uniformity. Even 
minute variability in material properties from control volume to control volume 
throughout the material space can result in variability among possible conduction 
paths. If higher conductivity leads to higher current density in a particular path, 
regenerative effects will tend to accelerate this current concentration many fold. The 
macroscopic effect will be that nearly all current between electrodes will flow 
through one or a very few such paths, or filaments. 

III-1-2 Predicting Dominant Path Failure Modes 
This second condition necessary for dominant path failure, material nonuniformity, 
is not within the scope of traditional continuum mechanics. However, a mathematical 
technique is developed below whereby Gaussian-distributed non-uniformity is 
randomized and imposed spatially in the 
context of finite elements. Just as each 
control volume of material is slightly 
different from other control volumes of 
the material in space, the model analogy 
allows for element-to-element material 
properties to vary both randomly and 
within a logical Gaussian structure. Cha- 
otic phenomena such as dominant path 
failure are accurately predicted. An 
example of such a finite element model 
is shown in Figure III-l at right. This 
model shows dominant path overheating 
in voltage-sensitive material sandwiched 
between parallel electrodes and sub- 
jected to an overvoltage transient. 

Figure III-l 
Model of chaotic dominant path failure in voltage- 
sensitive material subjected to overvoltage transient. 

Models using this technique cannot predict the exact location of dominant path 
formation. However, the overall behavior of the assemblage and the character of the 
performance of the material will be far better represented when compared to 
traditional techniques. 

III-1-3 Developing New Materials 
Predicting failure modes is only part of the benefit of modelling. The goal is to 
develop new, robust materials which do not fail when subjected to overvoltage 
transients. Using models to develop such robust materials requires three steps. Step 
one is to model the failure mechanisms successfully such that the performance of the 
modelled material matches laboratory measurement. Step two is to manipulate the 
bulk properties within the model until the desired performance is achieved (i.e., 
chaotic failure mechanisms disappear), being careful to select properties to 
manipulate that can be realistically altered in the real world. Step three is to find a 
material formulation that can actually achieve the modelled change in bulk properties 
that achieved success in model space. 
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SECTION III-2 

FINITE ELEMENT EXPRESSION OF THE 
LOCAL QUANTUM MECHANICAL PROBLEM 

III-2-1 Control Volumes As Finite Elements 
Extending the relationships developed in Part II to macroscopic geometries can 
theoretically be done by expressing the local quantum mechanical equations in 
continuum mechanical form. Control volumes are chosen to be large enough to 
average the effects of individual quanta. The properties expressed within any given 
control volume are consistent with the quantum mechanical relationships, and those 
relationships are applied uniformly within that control volume. The assumption is 
that if one chooses the control volume to be small enough, the predictions within that 
control volume will closely match measured behavior. The difficulty is in attempting 
to use a single set of expressions relating to a small control volume and to apply 
these expressions seamlessly to a macroscopic structure. Material variations among 
control volumes within the structure are thereby ignored. Chaotic failure mechanisms 
such as the dominant path phenomenon described in Part III-l cannot be predicted. 

The finite element method lends itself to 
macroscopic extensions of such control 
volume calculations.1 This divide-and-con- 
quer approach to continuum mechanics 
seeks to divide a large solution domain into 
a large number of subdomains, called ele- 
ments. The element shapes are typically 
chosen to be polygons, having straight or 
deformable sides, such that they can be fit 
together to approximate the shape of the 
solution domain. See Figure III-2. Inter- 
polation functions are used to describe the 
field variables within each element and 
across the solution domain in piecewise- 
continuous form. With regard to the instant 
problem, each element may be treated as an 
individual control volume, within which the governing equations are satisfied. 

III-2-2 The Problem of Material Variability 
Although the finite element method can be used to alleviate the problems of 
geometric complexity in a continuum mechanical problem, material variability is 
ignored in traditional applications of this method. Perhaps as a leftover from closed- 
form solution techniques, materials of a given type within the solution domain are 

Figure III-2 
3-D solution domain Q showing a single tetra- 
hedral element as part of discretization. 

Zienkiewicz, O.C., The Finite Element Method, McGraw-Hill, London, 1977 
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assumed to possess certain average properties that are imposed throughout with 
mathematical perfection. Such perfection does not exist in the real world. What is 
introduced below is a formal method for introducing random material variation in a 
form that mimics the variation in real materials. The method follows with means to 
impose that variation on an element-by-element basis for finite element solution. 

The description proceeds in this sequence. First, the generalized continuum 
mechanical field equation is introduced. This equation is then reduced separately to 
the thermal and electrical conduction field equations, along with detailed finite 
element formulations for each. Equations for coupling between the thermal and 
electrical phenomena, developed in Part II, are then reintroduced. Iterative schemes 
are developed for handling the coupling terms. Finally, a Gaussian distributed and 
spatially imposed (i.e.;element-by-element) material randomization scheme is 
presented. 

III-2-3 Continuum Mechanical Field Equation 
Transient field problems in domain Ü can be expressed in the general form 

V- k Vq> = f{xy,z,t) + kt<p + ktt<p 

where <j>si?«P;        <p s #2. 

with boundary conditions 

dt d<p2 

<p = 0>(*jsz,0      on surface    S1, t > 0 

^-n   +k   &„   + k  ^P 
dx   x      yydy   y      adz 

on surface v    />o 

*« a   ** + k»-jrn, +kzz-=Tnz+ 9(x^,z,t) + h(xy,z,t)<p = 0 

and initial conditions 

<P =<P0(*>y>z)in ß atr = 0 

<P = ^o(JC>)''z)in Q at' = 0- 

Expression of field problems in such a generalized form is useful in developing a 
finite element solution to coupled field problems. By using a general form the 
solution technique, and therefore entire sections of implementing computer code, can 
shared by each of the coupled phenomena. In the instant case, the problem is 
thermoelectrical. The solution must solve the temperature and voltage field problems, 
providing for flow of thermal energy and flow of electrical current. The analogies are 
shown in Table III-l. The solution must also provide for coupling terms that affect 
two-way interdependence: local fluctuations in thermal energy as a function of 
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nonlinear joule heating, and local changes in apparent resistivity as a function of 
local thermal energy. Finite element formulation of the general problem is developed 
below, followed by specifics for the thermal and electrical problems, coupling, and 
material variability. 

Temperature General Voltage 
<p = T Term (p = V 

Temperature T <P Voltage V 

Thermal conductivity k k Electrical conductivity o 

Heat flow across surface q Current flow across surface 

Volumetric heat generation q* Charge generation 

Temp, of convective fluid <P~ Input voltage 

Convective heat flow h(<p-<P~) Current input across resis- 
tor, where R = 1/hA 

Table III-l 
Thermoelectrical Analogies 

III-2-4 Finite Element Formulation of the Continuum Mechanical Field Equa- 
tion 
As described above, the finite element method requires the solution domain to be 
divided into subdomains, or elements. Interpolation functions are chosen to describe 
the field variable(s) everywhere within the element. These functions express the 
value of field variable(s) relative to spatial coordinates and are formulated in such a 
way that the field variable is specified within the element at distinct points, or nodes. 
The nodes typically lie along the sides where the elements connect to each other. The 
interpolation functions {Nt) have undetermined parameters, or multipliers. These 
undetermined parameters may be, for instance, coefficients of a linear polynomial 
when such a function is used for interpolation. The function has the following general 
form for a time dependent problem where for any instant of time the time derivatives 
are assumed to be functions of the spatial coordinates only:2 

r 

<P(e) = E  N.(x,y,z) a Jit) = lN\{a(t)}& 
1=1 

where ax (t), a2 (t),..., ar (t) are the undetermined time-dependent nodal parameters 
for an element of r degrees of freedom. \N\ is a row vector of dimension 1 x r, and 
{a(t)}{e) is a column vector of dimension r * 1. 

2 Huebner, K.H., The Finite Element Method for Engineers, John Wiley & Sons, New York, 1982 
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The number of undetermined parameters in the interpolation function equals the 
number of nodes at which the field variable is to be calculated within the element. 
There are three implications. First, equations describing the nodal values in terms of 
the element properties can be collected to form element stiffness matrices. These are 
assembled in turn to form the global stiffness matrix that, with the addition of 
boundary and initial conditions, fully describes the problem. The interim result is a 
system of linear algebraic equations which is solved simultaneously for all nodal 
values of the field variable. 

Second, the sequence of repetitive operations, or algorithm, needed to solve such a 
system of equations is a task that is particularly suited to computer implementation. 
Nonlinear problems typically require repeated iteration of the equation solving 
process. 

Third, once the nodal values are known, values of the field variable everywhere 
within each element can be solved for by introducing these nodal values back into the 
interpolation function. This exercise is especially useful in displaying results. 

What sets the finite element method apart from other discretization schemes, such as 
finite differences, is that with proper choice of interpolation function it provides true 
piecewise continuity for field variable(s) within the solution domain. One way of 
picturing this piecewise continuity is to imagine that the interpolation functions "zip 
together" to provide continuous expression of the field variable(s) from element to 
element. 

If the element stiffness matrices are expressed in the form 

<P(e)(x,y,z) = L7V(e>J{aW} 

then for M elements within the solution domain the complete representation of the 
field variable is given by 

M M 

E <p(ew,z) = E 
e=l e=l 

<P(x,y,z) = E <p(eW,z) = E L»(e)J{a(e)} 

No variational formulation exists for the complete parabolic expression of the 
transient heat transfer equation, but Galerkin's method leads to the following general 
finite element solution: 

[*„,]«> {<p}«> + [*,]«> {({)}<*> + [jy <e> ftp}« + [*4]<«> {(p}(*> + {F(*)}(e) = (0} 
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where 

'QW 

dN. dN. dN. dN. dN. dN," 
k   —-—J-+k  —-—J-+k  —'-—L 

( " dx   dx       yy 8y   dy       zz dz    dz J 
dQ 

K={   KtN.N.dQ, 

K„ = f   K„N.N.dQ ttii     JQ(«>   "    '   1 

K.   = f   hN.N.dS- 
*■>•    Js? J 

F.= f    fN.dü+ f    q.dS, 

III-2-5 Transient Thermal Equation 
Consider transient heat transfer in a three-dimensional anisotropic solid abounded 
by a surface Pas shown in Figure III-3. The generalized field equation takes on the 
parabolic form3 

V-ftVr + ?*=pC — 
' dt 

where 
k represents the anisotropic conductivity matrix, 

q* = q* (x,y,z,t) is the internal heat generation rate per unit volume, 

p = p (x,y,z,t) is the material density, 

Cp = Cp (x,y,z,t) is the specific heat. 

Chapman, A.J., Heat Transfer, Third Edition, Macmillan, New York, 1974 
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Initial conditions are 
T(x,y,z,0) = T0(x,y,z) 

Boundary conditions include specified surface temperature 

Ts = Tj (x,y,z,t) 
specified surface heat flow 

on Sj 

convective heat exchange 
Wx + qyny + qjiz = -qs on S, 

qjix + qyny + qjiz = h(Ts-TJ on S, 

Note that radiation heat exchange expected to be second order in the instant problem 
and is therefore not considered in these analyses. 

*A 

Convective 

Heat      S. 
Transfer 

Flow 

Specified 
Temperature 

X 

Figure III-3 
3-D solution domain Q for general heat conduction, with surface T. 
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III-2-6 Finite Element Formulation of the Transient Thermal Equation 
The finite element formulation for the generalized field equation reduces to the 
parabolic, thermal form. [JV] becomes the temperature interpolation matrix. For 
economy of expression, we choose [B] to represent the temperature gradient 
interpolation matrix 

lB(x,y,z)] 

dNt    dN2 

dz      dz 

dN. 

dx dx dx 

8NX dN2 8Nr 

dy dy By 

3Nt dN2 8Nr 

The transient thermal finite element formulation becomes 

[C]^B + IIJrcl+[*J]{r} - {RT} + {RQ} + {Rq} + {Rh 

where 

[C] = f    pc{N)lN\dQ 

is the thermal capacitance matrix. The coefficient matrices 

[Kc]  =  f    lB]rlk)[B]dQ 

[Kh\  =   [  h{N}[N\dT 

relate to conduction and convection, respectively, and the heat load vectors 

tRr} = -f  (q-A){N}dT 
Js. 

<V - La {N)dQ 

<*,> = [  qs{N)dT 

{*. = LkT< {N)dT 

III-2-7 



define specified nodal temperatures along a surface, internal heat generation, 
specified surface heating, and surface convection, in the above order. 

H 

III-2-7 Two-Dimensional Implementation: The Linear Triangular Element 
A three-node triangular element is shown at 
right in Figure III-4. The element is as- 
sumed to have thickness r and to have 
temperature defined throughout as a first- 
order linear equation in x and y as shown. 
Although higher-order elements could be 
used, this element is chosen for its simplic- 
ity while still expressing temperature (al- 
though not the derivatives of temperature) 
with piecewise continuity from elem ent to 
element.4 

The first-order expression for temperature 
can be rewritten in terms of natural coordi- 
nates I,,-where 

T= a,+ a2x +a3y 

Figure III-4 
Linear triangular element 

Lt(x,y) = —-(«, + b.x + c.y)   , i = 1, 2, 3 
It L\ 

for the triangle of area A, and where 

2A 

1   xx yx 

1 x2 y2 

1    *3    ^3 

2 ( area of triangle 1 -2 -3 ) 

x2y3-
x

3y2 

x
3yi ~ xiy3 

Xl-^2  _X2-^l 

{*) 

x3    x2 

*2_*1   ) 

Segerlind, L.J., Applied Finite Element Analysis, John Wiley & Sons, New York, 1976 
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For the three-noded linear triangle the element interpolation functions equal the 
natural coordinates, or 

N, = L, 

Since 
dNt dN, 

dx       2 A dy        2 A 

The temperature gradient interpolation matrix becomes 

[B] 
2A 

bl    b2    b3 

Cl     C2    C3 

which leads to the conduction matrix 
[KJ = AT [B]T [k][B] 

capacitance matrix 

internal heating vector 

pCAi 
[C]  =  *-l— 

12 

2 11 

12 1 

111 

{R0) = ^- Q 3 

»    _  9^ll2 fl 

the vector for heat flow across one element edge l12 

and components for convection across one element edge ln to fluid at temperature 
Tm with convection constant h 

I'J 
h*ln 12   1 

6      |l   2 

{R. 
*r.xiuli 
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The gradient across this first order element is constant and given by 

„_,      dT r     dT r r r VJ = — /   + — /   = B   i   + a2y 

Constant gradients within elements imply discontinuities in the gradients at the 
boundaries. Heat (and electric current in the electrical problem) are not rigorously 
conserved. However, with sufficient element packing in ares of expected large 
gradient change, the resulting solution will not suffer significantly from this 
constraint. 

III-2-8 Solution in the Time Domain 
Solution in the time domain is accomplished explicitly with difference terms 
substituted for differential operators in time. For instance, a central difference 
approximation of the derivative of generalized field variable „, with respect to time 

would be, for time interval tg, 

■   _ rf£ „  <Pi-<Po 
it ts 

Note that the best approximation for • can be found at time 

2 

requiring that all parts of the solution be evaluated at this time. 

Time dependency in the instant thermoelectrical problem is solved explicitly for 
several reasons. First, the coupling procedure is itself iterative. Second, extreme 
nonlinearities possible in local expressions for 

o = o(5,r> 

require that they be evaluated at small time intervals anyway. Third, a structure is 
implied for adding subsequent nonlinearities and additional field variables with a 
minimum of effort. The central difference formulation makes those additions less 
cumbersome. 

Implementing central difference time stepping in vector form gives 

{<p} « I({(pi}-{(Po}) 
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Likewise, the next update for {^}, designated {(p }, is 

{<Pj} = — ({q>0} + (cp1}) 
la 

and the forcing function update is 

{FtY =±({F0} + {Fl}) 

III-2-9 Electrical Equation 
As a first approximation to the electrical equation, all derivatives with respect to time 
are assumed to be zero over a time interval represented by the small time step used 
in the calculations (as small as 10"9 second). Therefore 

dnV ^— - 0      for all « > 0 
dt" 

Although this may seem to be a gross oversimplification, it is believed justified on 
the basis of the speed of electrical response vs. thermal response. Since the electrical 
response is much faster, during each time step it is reasonable to assume that in 
relative terms the electrical problem occurrs instantaneously. With the availability 
of a faster computer and more time for analysis, the secondary effects of electrical 
capacitance and inductance may eventually be addressed. 

With these assumptions, the electrical equation reduces to the elliptical form 
V-oVK + Z* = 0 

where T represents a current source and o is the anisotropic conductivity matrix. 

Boundary conditions include specified voltage at a surface 
K = Vj (x,y,z,t) on Sj 

specified surface current flow 

and time-dependant voltage input with constraints imposed by external electronic 
circuit behavior 

V = V(t,RB,...) 

where RB is an external ballast resistor as an example of circuit constraint. 

III-2-10 Finite Element Formulation of the Electrical Conduction Equation 
The finite element formulation for the generalized field equation, given the extreme 
simplifying assumptions, reduces to the elliptic form for electrical conduction. \N\ 
becomes the voltage interpolation matrix; [B] is the voltage gradient interpolation 
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5 

matrix. Other development proceeds as in the thermal formulation, but in quasi 
steady-state form: 

[Kc   ]{v) = {RJ+{R.} 
glee y * 

with coefficient matrix 

\K    ] =  [    [B]T[o][B]dQ 

and load vectors 

{Rv) = -f  (I-n){N)dT 
Js. is, 

Ja 
l{N)dQ 

define specified voltage at a surface and charge generation, respectively. 

III-2-11 Thermoelectrical Coupling Equations 
Local thermal input from electrical conduction relates to the local voltage field E, and 
to the local electrical conductivity o. Local current density is5 

/ = o£ 

and local heat generation rate (per unit volume) is 

T2 

a 

The elemental heat generation rate is then 

*    _ r2 
9(e) °(e) 5(e) 

Solymar, L., and Walsh, D., Lectures on the Electrical Properties of Materials, Fourth Edition, Oxford 
University Press, Oxford, 1988 
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For a two-dimensional element of area A and depth T, the total heat generated over 
time step ts is 

For the above equation the element electrical conductivity is assumed to be constant. 
However, with voltage gradient-sensitive materials, the conductivity is considered 
to be a highly nonlinear function of voltage field and temperature, or 

o = aa,T) 

which becomes for a single element having constant gradient in voltage and average 
temperature Tave(e) 

a(e)     a<,o (€(<>)'r«v*w) 

There is an implied complexity which may have escaped the reader: the above 
equation is for local a , assumed to be constant within a single element. However, 
changes in local a may profoundly affect the global description of £ , which in turn 
affects E, within each element ... which affects local o , etc., etc. Implied in the 
construction of the last sentence is the iterative scheme for solving the electrical 
equation involving materials where local voltage gradient governs, in part, local 
electrical conductivity. That iterative scheme within the electrical formulation can 
be summarized as 

°(e\        a«o(£«Vrav,!w> 

where the subscript 1 refers to the updated value and subscript 0 refers to the last 
calculated value. Tme(e) refers to the average element temperature calculated in the last 
time step and assumed to be constant within the iteration solving the electrical 
equations. Since this iteration is often unstable, a dampening term/? is employed such 
that 

o-(c)i =(l-p)o-(e)o ♦P^WW 

where/» = 0.3 is a typical value used to slow convergence.6 

The updated o and £ are used to calculate heat generation in the next time step. A 
flow chart of the complete solution scheme is shown in Figure III-5. 

6       Arden, B.W., Astill, K.N., Numerical Algorithms: Origins and Applications, Addison-Wesley, Reading, 
MA, 1970 
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III-2-12 Spatial Variability of Materials 
The finite element formulation devel- 
oped here is based on the assumption 
that real-world material properties vary 
spatially. To address such variability, 
properties must vary from control vol- 
ume to control volume within a given 
solution domain. The hypothesis is that 
the spatial variability is Gaussian. That 
is, if one chooses to divide a given 
volume of material into control vol- 
umes of a given size, then the resulting 
probability density function for a given 
property over that volume would have 
the appearance ofthat shown in Figure 
III-6. Choosing a smaller size for each control volume, thereby increasing the total 
number filling the volume, results in a flatter distribution, i.e., larger variance. 

Implementing this Gaussian-distributed and spatially-imposed randomness within a 
finite element framework comes naturally from the discretization of the solution 
domain. The elements become the control volumes referred to above. Many smaller 
elements result in a flatter probability distribution when compared to a few larger 
elements covering the solution domain, the limit being one element. 

The probability density function for a Gaussian distribution can be expressed 

Material Property 
Figure III-6 

Material property distribution for all control 
volumes dx by dy by dz. 

/xW 
21ZO 

-(y-«)2/2o* for - °o < y < ■ 

where the standard deviation op is subscripted to avoid confusion with electrical 
conductivity, o. 

Using the above density function in a random way to material properties could be 
computationally intensive. However, good approximations ofthat distribution can 
be obtained easily from an application of the Central Limit Theorem. For example, 
let the random variables^, X2,..., Xn be independent with means u ,, \i 2,...,   \x 

2    Consider the random variable Z„, n and variance n
2    a2 

o. 

z  - 
2 Xt -  S u,. 

1=1          i=i 

^n 

>^ 

n 

2 a2 

J = I 
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Zn is approximately Gaussian distributed with zero mean and unit variance in the 
sense that7 

lim
np{z <b) = 

/^•-",* 

Note that if the Xt form a random sample, with each Xt having mean \i and variance 
0

2, then 
p 

zn = (*-P)£ 
°P 

Therefore sample means from random samples tend to form Gaussion distributions 
as described by the Central Limit Theorem even if the Xt are not Gaussian, or 
normally, distributed. Since a random real number has a uniform distribution from 
0 to 1, it has mean 0.5 and a standard deviation j f /jj • The theorem then implies 

that the sum of n random numbers has approximately a Gaussian distribution with 
mean n/2 and standard deviation   / /12 . Given a sample of random decimal 

numbers r7 , 5 ,... ,„r , then a random observation from an apparent Gaussian 
distribution with mean ji and standard deviation ap can be constructed from 

a 
p 

v/n/12 
Sr, 
/=i 

<        n     o,    ^ 
P   ~  — 2   yfnTto f 

One may choose /1 such that the square roots need not be calculated. In the practical 
implementation of the above expression, n is chosen to be 48, giving 

48 

-^ Sr. + (,1-12 0,) 
2    /=1 

which requires no more than five statements of FORTRAN or C code to execute. 

A sample Gaussian distribution calculated from the above expression is shown in 
Figure III-7. The sample of 1000 x's was calculated by a program written in Borland 
C where the 48 r's for each x were calculated from a pseudorandom number genera- 
tor using the time of day in milliseconds as a seed. The input u and ap were 10.000 
and 0.100, respectively. The resulting values calculated from the generated numbers 
were 9.9994 and 0.1011 as plotted. 

Hillier, F.S., Lieberman, G.J., Operations Research, Second Edition, Holden-Day, San Francisco, 1974 
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Figure III-7 
Sample Gaussian distribution calculated from 1000 sums of 
evenly distributed random numbers. 

Practical values for u. and op come from laboratory tests of material samples of 
volume VT, yielding statistics from measurement. For a given finite element analysis 
having all element volumes of exactly VT, the variable material property could be 
calculated from the above expression, where the r,- come from a pseudo-random num- 
ber generator. If the element sizes vary, a condition which is far more likely, then the 
material property would need to be adjusted for an element of volume V(e) according 
to 

P(e) 
48 

/=1 

( ji - 12 On    ) 

where 

a. 
P(e) 

o_ 
N (e) 

There is a major implication of using the above Gaussian-distributed and spatially- 
imposed randomization technique. Provided the random number seeds are varied, no 
two runs of the same problem will yield exactly the same results. The collective 
behavior of a set of such otherwise identical problems is non-deterministic, just as 
with real physical systems. 
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START 

i 

Read in Geometry, Boundary Conditions, Initial 
Conditions 

I 

Set Up Material Variability from 

o_ 48 

x = J!w  S r, + (ji - 12 a     ) 
2      /=1   ' '<•> 

Set t = 0 

I   STOP   I 

t = t + 
At 

Find Average Element Conductivities from 

i 

Solve Electrical Problem Over Time Step At 
This Involves Iteration About 

°(e)i =(i-P)°(e)o 
+p°w(Wr-> 

I 

With Updated Element Voltage 
Gradients and Conductivities, Calculate Thermal 

Power Generated from 

ßw = Ato^r, 

i 

From Q(e), Modify Force Vector 
in Thermal Equations 

I 

Solve Thermal Equations 
Over Time Interval At 

Get New Nodal Temperatures 

i 

Output Voltage and Temperature 
Results at Prescribed Intervals 

Figure III-5   Solution Scheme Flow Chart 
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III-2-13 Axisymmetry 
In solution domains having an axis of rotation z it is convenient to express the 
problem axisymmetrically, where x and y are replaced by r and z. This 
formulation is equivalent to expression in cylindrical coordinates, where the 
generalized Laplacian operator becomes 

V2(p = &± + i^P + -l^P  + &± 
dr2       r  dr ae2 

dz2 

but with the assumption that the effect of 6 is negligible, or 

d 
36 

- 0 

giving 

v2(p = ¥± + liv + 3> 
dr2       r  dr       dz2 

such that 

K%=  '    2nR 
dN. ON. ON. 8N.' 

k  —'-—L +k  —i—L k   i i + ii 
" dr    dr        a 8z    dz ) 

dQ 

where, for the three-noded axisymmetric triangle, 

2   11 

R  = —Lr. 
12 

12   1 

112 

(r) 

the capacitance matrix is 

[C]  =   f    rpcn{N}lN\dV 
JK»       

P 

for element volume V. These and other terms similarly reflect the fact that 
axisymmetric elements represent cross-sections of area A swept 2% radians 
around the z axis to form rings. See Figure III-8. 
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r 
Figure III-8 

Axisymmetric three-noded triangular element 

The axisymmetric transient thermal equation becomes 

VkrVT + rq* =rpCp^=- d_T 

dt 

where the finite element formulation for the three-noded triangular element gives 
natural coordinates 

Lt(x,y) = ——{a,+blr + c{z)  , i = 1, 2, 3 

Vectors {a}, {b}, {c}, and A are likewise calculated as shown in the two 
dimensional formulation in III-2-6 by replacing x and y with r and z, respectively. 

The capacitance matrix, expanded from the above general expression, is 

2-rcpCpA 
[C]  = 

12 

6r,+2r2+2r3    2r,+2r2+r3     2r,+r2+2r3 

sym 

sym 

2r,+6r2+2r3    rt+2r2+2r3 

sym 2ri+2r2+6r3 
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and heat generation matrix becomes 

6r,+2r2+2r3    2r1+2r2+r3     2r1+r2+2r3 

sym 

sym sym 

[*«] 
27t^*A 

12 
2r,+6r2+2r3    r^lr^lr^ 

2rt+2r2+6r3 

also reflect the increasing volume implied by increasing r. 
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SECTION III-3 

ITERATIVE SOLUTION TECHNIQUES FOR LARGE SPARSE 
SYSTEMS OF SIMULTANEOUS NONLINEAR EQUATIONS 

III-3-1 Background 
The global stifihess matrix and force vector in a finite 
element problem have certain characteristic proper- 
ties. First, for any problem of substance, they repre- 
sent a system of equations with a large number of 
unknowns. Second, particularly after modifications 
for the boundary conditions, the global stiffness 
matrix tends to be quite sparse, with a low percentage 
of nonzero components. Third, wherever possible, 
symmetry is preserved to reduce storage and number 
of arithmetic operations in solution. Fourth, nodal 
renumbering methods can be used to reduce the 
bandwidth, outside of which all terms are zero. See 
Figure III-8 at right. Storage can then be reduced to 
the diagonal and one side of the symmetric matrix, as 
shown in Figure III-9. 

Such storage schemes are useful for implicit solution 
methods such as Gaussian elimination, where the 
number of arithmetic operations is known in2 times 
bandwidth). Explicit iterative methods can benefit as 
well. However, for three dimensional problems* 
bandwidth cannot be reduced as much by renumber- 
ing as is possible in two dimensional problems. 
Storage therefore becomes a severe limitation with 
large three dimensional problems even on the largest 
mainframes. Even modest two dimensional problems 
can be a challenge for a small desktop computer. 

—*-|        \+— Bandwidth 

T 
n 

I SYM 

Figure 1 
Global stiffness matrix for n un- 
knowns showing band width. 

»| [*-Bandwidth 

T 
n 

1L 
Figure 2 

Storage of a banded sym- 
metric matrix. 

The number of unknowns in the problems addressed in this work are expected to 
exceed 20,000, representing a full matrix ofthat number squared times four bytes 
precision, or 1.6 billion bytes. The available computer is a Pentium-based PC with 
32 megabytes of RAM. In that context, the need for this Section and discussion of 
solution techniques can be understood. 
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III-3-2 Iterative Methods 
For a system of« equations 

each equation has the form 

[k] {<p} = {/} 

*/1<Pi +£,,«),+...+£..<p.+...+Jfc.    ,(P   , +k.  (p    = f, 

Choosing the notation such that the superscript 0 represents the last iteration and the 
superscript 1 represents the new, Gauss-Seidel can be expressed as 

<P! = <P/° + 

i-1 n 

ft - E *„*; - E *„%* 
y=i /=' 

1,1 

Selective over-relaxation (SOR) uses an acceleration multiplier to speed conver- 
gence, resulting in the following refinement in Gauss-Seidel: 

<P? = <P? + w 

/-i 

E 
hi 

*w 

where o> is chosen to maximize the rate of convergence. It can be shown that the 
method can only converge for 0 < co<2, and that diagonal dominance is required for 
stability and proper convergence in these methods. 

III-3-3 Sparse Iterative Methods 
Sparse iterative methods attempt to make ultimate use of the "space" within a typical 
finite element stiffness matrix, where that space is made up of zeros. The advantage 
in saving of space may be a factor of 100 or more over banded matrices. Typically 
one large vector contains the diagonal plus only the nonzero components. The 
locations of those nonzeros are preserved in a two column integer matrix containing 
the pointers to the stiffness matrix row and column positions. Iterations using Gauss- 
Seidel or other methods requires careful attention to the pointer array. Pointer arrays 
are developed more fully below. 

III-3-4 Introducing Vectorized Multipliers in Iterative Methods 
The problem of using a single acceleration multiplier as in SSOR is that not all 
equations have the same conditioning. That is, some equations are always more 
diagonally dominant than others. Those that are not diagonally dominant will tend 
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to diverge, while those that are diagonally dominant can be induced to converge more 
quickly. It has been found that by using a vector of accelerator multipliers, one term 
per equation instead of one term for the whole set of equations, convergence can be 
greatly accelerated while preserving stability. 

In the method described below, Vectorized Sparse Selective Over Relaxation 
(VSSOR), an accelerator vector is combined with certain coding techniques that 
sacrifice a small amount of storage in the interests of speed. In test problems VSSOR 
ran 10 to 20 times faster than Gaussian elimination with bandwidth optimization. 

In VSSOR, the diagonal is stored in vector diag 

T 
n 
1 

diag 

where diag[i\ contains the floating point value of the diagonal on the /th row of the 
matrix [k\. The matrix [a], having dimensions 

- nnrp - 

T 
n 
I 

such that a[i\[/\ contains the actual value of the off-diagonal matrix components 
where / is the row number andy is the arbitrary value of the position where the value 
is stored. There are nrp[i] such positions for each row i such that 

nrp[i] < nnrp,    1 < i < n 

where nnrp is the upper limit of possible off-diagonal nonzeroes in a given equation, 
as determined by the stiffness matrix assembly overlay. 

Also necessary is the integer matrix 

T 
n 
I 

nnrp 

nz 
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where «z[/][/] contains the column position of a[i\[/\ in the original matrix. Also 
useful for limiting the number of operations is nbw, the bandwidth of the original 
matrix. 

The vector 

1 
n \ 
i 

ace 

contains the floating point multipliers for the accelerating convergence such that each 
equation is iterated according to 

q>{ = (1 - acci) (p° + ace, 

i-\ n 

fi -E kiA -E *u*; 
7=1 y=m 

*i,i 

where an effective expression for {ace}, keeping the value between 0 and 2.0 is 

ace. = A tanh 1 B Hi \ 
i-l 

E aij\ 

with constants^ and B having typical values of 2.0 and 0.5, respectively. 

It can be seen from Figure 10 that the tanh function can be effective in controlling the 
accelerator multipliers, exploit- 
ing the relationship between the 
diagonal and off-diagonal terms 
while maintaining the range of 
acceleration multipliers between 
the prescribed values of 0 and 2. y^\ ß y = A tanh Bx 
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VSSOR is expected to have additional benefits in speed on two fronts. First, in the 
full three dimensional problems to be faced in Phase II, bandwidth optimization has 
limited value in reducing the size of the global stiffness matrix. Sparse iterative 
methods then represent the only known techniques of limiting both storage 
requirements and number of arithmetic operations to manageable levels. 

Second, the iterative coupling described in Section III-2 can combine with the 
iterative VSSOR methods to allow immediate updates of the entire system - not just 
an interim set of equations - as global iteration proceeds. 
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SECTION III-4 

TEST CASES FOR THE TWO DIMENSIONAL 
AND TWO DIMENSIONAL AXISYMMETRIC 

FINITE ELEMENT PROGRAMS 

III-4-1 Purpose of Testing 
The computer programs based on the above derivations and algorithms are 
demonstrated below. The purpose is twofold. First, the programs are tested for 
accuracy in problems that have analytical results against which to compare. These 
problems are intended to test one feature at a time in a simple, unambiguous way. 
The obvious assumption is that the features which test successfully by themselves 
will also work together and produce accurate results in concert. 

The second purpose of the program testing is to demonstrate multiple features 
simultaneously. Finding analytical results are difficult. In some cases the finite 
element model is presented as a qualitative example where no known solution by 
another technique is available. 

III-4-2 JOULE HEATING IN A RECTANGULAR PIPED 
This problem tests transient temperature evolution as a result of electrical conduction. 
A block of linearly conducting material is powered by applying a voltage across 
parallel surfaces, as shown in Fig- 
ure 111-13. 

0 V 
These values define the problem: i y 
length (x) *J 

L = 0.01 m 
height (y) 

H = 0.005 m 
width (z) 

W = 0.01 m 
electrical conductivity 

a = 20 Q1 m1 

thermal capacitance 
pCp = 2.0e6J/(m3oC) 

applied voltage 
V = 10 volts 

time 
t = 1.0 second 

10 V 

Figure 111-13 
Conductive block with applied voltage 

for Joule heating 
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As defined in Section III-2-11, local thermal input from electrical conduction relates 
to the local voltage field I, and to the local electrical conductivity a. Local current 
density is1 

/ = o£ 

and local heat generation rate (per unit volume) is 

r2 

q* = — = o-e 
o 

for the case where a is a constant. Since the voltage in the test problem is applied 
uniformly across one face at 10V and across the parallel face at OV, then the y and 
z components of ^are zero and 

r V I = 1000 — 
m 

then 

q*  = of  = 2.0 e1 — 
m3 

The rate of temperature rise everywhere within the material volume is inversely 
proportional to the thermal capacitance 

dT        a* 

dt        pC 
p 

or, solving for constant temperature rise in linear material 

Ar = _ ?*A* 

PCP 

For the instant problem this gives 

Är =   (2.Qg
7)(1.0) QC 

2.0e6 

Solymar, L., and Walsh, D., Lectures on the Electrical Properties of Materials, Fourth Edition, Oxford 
University Press, Oxford, 1988 
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or 

AT = 10 °C 

The total power generated in the block is 

.01    .005   .01 

P =    f     f     f  q* dxdydz = 10 W 
x=0  y=0   z=0 

Program TVtranR was used in 
conjunction with the finite 
element mesh shown at right 
in Figure III-14, employing 
triangular elements, to arrive 
at these same answers to eight 
decimal places. 

Figure 111-14 
Finite element grid for 2-D Joule heating problem 

The temperature at the end of 
one second is a uniform 10°C 
throughout the block. The 
voltages attain a constant gradient from 0 to 10 volts as shown in Figure III-15 

This is a simple problem. It does serve to demonstrate the program capability with 
regard to basic fully coupled linear thermoelectrical phenomena. 

This procedure will now be repeated with a similar example having axisymmetry. 

Figure 111-15 
Voltage distribution 
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10 volts 

III-4-3 JOULE HEATING IN A CYLINDER 
In this problem, 10 volts are applied across opposing faces of a cylinder having a 
radius of 0.005m and a length of 0.01m, as shown in Figure 111-16. Material 
properties are the same as the previous problem. Because of the similar geometry, the 
finite element grids could be 
shared by both sets of calcu- 
lations. However, the axi- 
symmetric  code  interprets 
the x direction as z, and the y 
direction as r. 

As in the previous problem, 
the voltage applied across the 
same distance in the same 
material results in the same 
voltage gradient 

I = 1000— 
m 

0 volts 

Figure 111-16 
Electrical conduction in a cylinder 

since o = 20 Q'm1 as before, then 

q*  = O?  = 2.0 e1 HL 
m3 

Since the thermal properties also are unchanged, the one-second temperature rise is 

Ar = lo °c 

as before. Program 
axiTVTR supplies these 
answers accurate to 
eight decimal place 
precision. See Figure 
111-17. 

Although the power 
density for the two 
problems is the same, 
the total power, being 
generated over two dif- 
ferent geometries, dif- 
fers. For the cylinder, 

10 

a 
a 

2      4 

E 
I- 

Axisymmetric Test Problem 
Joule Heating 

——— nod« 1 
 nods 10 
^^^— nods 26 

  

0.2 0.4 0.6 
Time in Seconds 

Figure 111-17 

0.0 
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2 TU    .005    .01 

P =    f     f    f  q* dddrdz = 15.708 W 
6=0   r=0  z=0 

is also accurately calculated by program 
axiTVTR. 

Figure 111-18 

III-4-4 CONVECTIVE COOLING IN A CYLINDER 
This problem tests program axiTVTR capability in transient, convective gain/loss in 
an axisymmetric domain. Here, a long stainless steel cylinder at an initial uniform 
temperature T; is subjected to contact with a fluid at temperature T, with linear 
convection constant h. See Figure 111-18. 

Heat flux at the surface of the cylinder is 

q  = hA{Ts - TJ 

where Ts is the local surface temperature and A is the area of convective contact. The 
relevant parameters are: 

h 100BTU/(hrft2oF) 
T. 100 °F 
R 4.0 in 
Ti 1800 °F 
k 9.4 BTU/(hr ft °F) 
P 488 lb/ft3 

cP     = 0.11BTU/(lb°F) 

The analytical solution for the transient case is 

T = J, + (T. - TJ 2 £1      e -X\<U        J0(K
r)JAnR) 

ni KR jt(XnR) + jl{XnR) 

where: 
a is the thermal diffusivity 

a = 
PC„ 

J: is the Bessel function of order I 
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A,n is the nth root of 

J0(K
R) 

hR 
= 0 

Solutions to problems defined by the above set of equations are often found 
graphically from dimensionless plots of these expressions. Comparisons of four 
temperatures calculated by this quite approximate approach nevertheless achieves 
good agreement with the finite element results using program axiTVTR, as shown in 
Table III-2. 

Time 
(hr) 

Surface Temperature (°F) Center Temperature (°F) 

analytical axiTVTR analytical axiTVTR 

0.123 500 502.7 1324 1326.5 

0.332 218 217.9 500 504.2 

Table III-2 
Comparison of Analytical and Finite Element Solutions 

The finite element solution is shown graphically as a surface in Figure 111-19. 

1,600-- 

1,200-;- 

DegF 

1,662.22* 
i 1,524.43 to 1.662.22 
1.3B6.65 to 1,524.43 
1.24B.B6 to1.3B6.65 

ll.111.0a to1.248.B6 
973.291 to 1,111.0B 
B35.507 to 973.291 
697.722 to B35.507 

I 559.937 to 697.722 
(422.153 to 559.937 
|2B4.36B to 422.153 
146.5B3 to2B4.36B 

-1,600 

-1,200 

-000 

■400 

DegF 

0.2 0.1 
Time in Hours 

Figure 111-19 
Axisymmetric Convection Problem: Finite Element Results 
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III-4-5 JOULE HEATING, VOLTAGE APPLIED THROUGH RESISTOR 
This problem is similar to the Joule heating example of Section III-4-2, except that 
copper electrodes are employed at each end of the block of material, and voltage is 
applied to one of the electrodes through a 10Q ballast resistor. The opposite 
electrode is grounded. See Figure 111-20. 

10V 

10 Ohm Resistor 

Figure 111-20 

The finite element grid is shown in Figure 111-21. Note that a special feature of 
program TvtranR is employed that permits voltage to be applied uniformly to a group 

« 
T3 
O 
i- 
u 
9» 

"5 
:- v a. a o u 

C 

H ■MB 

^^^^^H^^B 
Br 

o 
i. -w 
U 

JU 
"3 
i« o 
a. a o u 

10 volts through 10 ohm resistor 5 
0 volts -/ 

Figure 111-21 
Finite element grid showing copper electrodes 

of elements with a specified in-line ballast resistor. 

The effect of the copper electrodes on voltage drop should be negligible, but the 
ballast resistor should halve the voltages in the block of material and should therefore 
reduce the power dissipation and rate of temperature rise by a factor of four. The 
results are:      P = 2.500 watts, 

uniform temperature rise over 1 sec = 2.500 °C, 
voltage varies uniformly from 0 to 5.000 volts. 

All are correct to eight decimal places. 
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III-4-6 JOULE HEATING, BALLAST RESISTOR, GAUSSIAN- 
DISTRIBUTED SPATIAL RANDOMNESS IN MATERIAL 
This problem is identical to the example of III-4-5, except that material randomness 
is introduced. The element-to-element electrical conductivity is made to vary 
according to a Gaussian distribution with the mean ofthat distribution equal to the 
nominal conductivity for that material. That distribution is then imposed spatially in 
a random manner employing the technique discussed in Section III-2. 

For this problem, the standard deviation of electrical conductivity multiplier is set to 
O.OOlQ-'m"1, and the hypothetical sample size used to discover that standard deviation 
is set to l.Oe"6 m3, equivalent to l.Oe"4 m2 area in this two dimensional problem. 

The resulting temperature patterns are not the uniform 2.500 °C of the non-random 
model as shown in Figure 111-22. Instead these temperatures vary from approximately 
2.4°C to 2.6°C, the range used to get the spectacular variation in Figures 111-23 
through 111-26. All are actual results from the same boundary and initial conditions, 
but the random numbers for the material randomness in each case uses as a seed the 
time of day in milliseconds. Using this technique, getting identical results from any 
two runs is extremely unlikely. The seeding can be forced to a specific value at the 
user's discretion, however. 

Figure 111-22 
Finite element solution of Joule heating in block 

with voltage applied through ballast resistor. 
No randomness in material. 
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Figure JH-23 
Finite element solution of Joule heating in block 

with voltage applied through ballast resistor. 
Randomness in material, case 1 

Figure 111-24 
Finite element solution of Joule heating in block 

with voltage applied through ballast resistor. 
Randomness in material, case 2 
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Figure m-25 
Finite element solution of Joule heating in block 

with voltage applied through ballast resistor. 
Randomness in material, case 3 

{ 

■Hi 

Figure HI-26 
Finite element solution of Joule heating in block 

with voltage applied through ballast resistor. 
Randomness in material, case 4 
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III-4-7 CYLINDER EMBEDDED IN MEDIUM WITH UNIFORM ASYMP- 
TOTIC FIELD 
The following is a solution to the test problem proposed in Section II-6-6, where a 
cylinder of conductivity Oj is embedded in a medium having conductivity a2 with a 
uniform asymptotic field applied at infinity. We choose the cylinder axis to be 
parallel with the z axis and the asymptotic field parallel to the x axis. Addressing the 
problem in two dimensions and choosing axes such that in both Cartesian and 
cylindrical coordinates the origin is at the center of the embedded cylinder (x = y = 
0 and r = 0 respectively), then, as reported in Section II-6-6, the asymptotic field at 
infinity is 

E,   = xE 

with potential function 

V2    =     Ex -E r cos (|) 

Results should give a field within the cylinder of 

2 a, 
EK = E*„ 

a2+ai 

cos(j) 

which gives in the x-direction (cos (}) = 1) 

EU   =   El. 

2 a. 

a2+ai 

which is a constant value within the cylinder, 
and in the y direction the field is also a con- 
stant within the cylinder 

E.    = 0 

In the finite element solution, good approx- 
imation of the above result is obtained by 
choosing the solution domain to extend to a 
distance of 5r, or five times the radius of the 
cylinder. See Figure 111-27. 

The finite element solution is further sim- 
plified by taking advantage of the two planes 
of symmetry in the problem. The solution 
domain then appears as shown in Figure III- 
28. Dirichlet conditions are then imposed as 
voltages: 

FIGURE 111-27 
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10.0 V x -  -5 r 

and 

V = 0.0 V x = 0 

giving a field 

E2 aIM!:=2.oJL 
5 cm cm 

The Neumann conditions are 

£ = •   i   , = s, 
dy 

and 

3F = 0    ;    y  = 0 

also implied from symmetry is 

d2v 
d2x 

0    ;    JC  = 0 

T 
> 
o Or 

1" 
> 
O 

1 
a, 

Figure 111-28 

The finite element grid for this prob- 
lem is shown in Figure 111-29. 

Finite element results are shown 
graphically in Figure 111-30 for the 
case where o1 = 1.0 Q"'cm"' and q = 
10.0 Q'cm"1. A close-up of the general 
vicinity of the cylinder is shown in 
figure III-31, where voltage resolution 
is also enhanced. 

Finite element results for the case 
where al = 10.0 Q^cm"1 and q = 1.0 
Q^cm"1 are shown in Figures 111-32 
and 111-33. Note that the voltages 
within the cylinder do not vary in y, and that the gradient is constant inx, in complete 
agreement with the analytical expressions. 

Figure 111-29 
Finite Element Grid 
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Figure 111-30 
Test case, cylinder in infinite medium: o, = 1.0 Q-'cnr1, (J2 

= 10.0 Q_1cm~: 

Figure III-31 
Test case, cylinder in infinite medium: a, = 1.0 Q^cnr1, o2 = 10.0 Q'cm"1. 

Zoomed view. 
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Figure 111-32 
Test case, cylinder in infinite medium: al = 10.0 Q'cm1, a2 = 1.0 Q'cnr 

■r*#f-. r ■ 4.9 
■ 4,8 

■ 3.7                            ^| ■ 3.6                           M ■ 3.5                          ^B 
■ 3.4                        ^| ■ 3.3                       M 

■ 3.3            M            ^> 
■ 2.2     ■     ^v ■ 2.1     MW 

■ i.i 1   I  / 
la.9  |      |     7 ■ O   8    ■          ■       . 
■ u.7    ■          ■ 

■ / 

/ ■ 

1 
Figure 111-33 

Test case, cylinder in infinite medium: a, = 10.0 Q'cm"1, o2 = 1.0 Q^cm"1. 
Zoomed View. 
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Comparison of the analytical and finite element results is shown in Table III-3. Slight 
departure from the analytical results can be attributed to the departure from "infinite" 
domain: the finite element solution domain extends only to r = 5.0 in the x and y 
directions. This example should be viewed as a strength of the finite element 
technique, since arbitrary shape changes and departures from classical solutions can 
be accommodated easily. 

Table III-3 
Analytical and Finite Element Results Comparison 

Voltage Values 

Location öl o-2 Analytical Finite Element 

Center of Cylinder 1.0 10.0 0.0000 0.0000 

x = -1.0, y = 0. 1.0 10.0 3.6363 3.5158 

x = -1.0, y = 0. 10.0 1.0 0.3636 0.3766 

x = -1.64, y = 0. 1.0 10.0 4.2778 4.1503 

x = -1.64, y = 0. 10.0 1.0 2.2822 2.3478 

The above voltage results represent only half of the solution to the embedded 
cylinder problem provided by program TVtranR. Coincident with the development 
of voltage patterns is the coupled transient thermal problem. These thermal properties 
were applied to materials 1 and 2: 

pi = p2 = 20.0 kg/m3    Cpl = Cp2 = 10.0 J/kg°C   kj = k, = 1.0 W/m°C 

with initial conditions: 
temperature T = 0.0 everywhere at time t = 0. 

The resulting temperature patterns for the above two cases after one second of 
heating are shown in Figures 111-34 and 111-35. Note that the heating patterns for the 
two cases are almost perfect mirror images of each other. 

In areas of the cylinder not subject to thermal influence from material 2, temperature 
rise calculated from the simple expression for Joule heating 

Ar = E2a 

PC„      pCB 

agree with temperature output from the finite element calculations to four decimal 
places. 
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Figure 111-34 
Test case, cylinder in infinite medium: a, = 1.0 Q_1cm~\ o2 = 10.0 Q'cm1. 

HP»! 

Figure 111-35 
Test case, cylinder in infinite medium: at = 10.0 Q'cm"1, o2 = 1.0 Q'cm1. 
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HI-4-8 TRANSIENT OVERVOLTAGE APPLIED TO CUBE HAVING 
QUANTUM TUNNELLING NONLINEARITIES 
This test was proposed in section II-6-7 as confirmation of the nonlinear capabilities 
of the finite element programs. The modelled object is a 1.0 cm cube of nonlinear 
varistor material having 0.1 cm copper electrodes on top and bottom. The bottom 
electrode is grounded. At time zero 40KV is applied to the top electrode through a 
25Q resistor. See Figure 111-36. Temperature at time zero is 0°C. The conductive 
medium is assumed to have the thermal properties of copper. Because the time frame 
of the model is so short (<50us), it is expected that the diffusion of elevated 
temperatures into the binders will be minimum. The heat capacity pCp of the varistor 
material is therefore assumed to be that of copper multiplied by the volume loading 
factor of 0.524, giving pCp = (0.524)(8.92 g/cm3)(0.385 J/g-°C). 

The material conductivity is given 
locally (within each control volume 
as defined by individual finite ele- 
ments) by the Nordheim-Fowler 
approximation derived in Sections II- 
l-9andII-6-7: 

o -^Ee~Ng^IE 

(Ng)2 

where KE = 6.4 x 10'7 A/V2 

ß£ =6.3xl06V/cm 
iV=100cm-1 

S=100A=10-6cm 

25 ohms 

OvVWV 
40 KV 

Copper 

Varistor 
Material 

Coppers 

X 

E 
. u 

9 E 

'£ u 

Figure 111-36 

and E is determined locally in space (within each element) and time (each time step) 
by the finite element program solving the modified Laplacian. Time steps were 
chosen to be 100 ns. 

The overall solution scheme is shown as a flow chart in Figure III-5. Note that in this 
preliminary example there are two simplifications. First, there is no direct relation- 
ship between electrical conductivity and temperature in the above expression for a. 

Second, the statistical variability in the material is assumed to be zero, which can be 
expressed as a zero value for the standard deviation 

o 
PM 
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The finite element discretization for this problem has 3111 nodes and 6000 elements, 
as shown in Figure 111-37. Five rows of elements were used for copper electrodes on 
both top and bottom. 

Figure 111-37 

The results show a uniform volt- 
age drop across the varistor ma- 
terial of 4891 volts shown graph- 
ically in Figure 111-38, a uniform 
temperature rise to 100°C in 
26.18 us, and total power gener- 
ated of 6.869 MW. All are in 
agreement with the analytical 
solution. 

Figure DI-38 
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Resulting temperature pattern at time of 24^is is shown in Figure 111-39. Note that the 
higher thermal conductivity of the copper electrodes results in a slightly lower 
temperature of the varistor material just at the interface with the copper. 

Although this graphic representation 
of temperature is relatively uninter- 
esting in itself, it is included here for 
contrast with four figures to follow. 

In these next four problems, statisti- 
cal variability is introduced in the 
form of nonuniform spacing between 
conductors, represented by parame- 
ter g. The assumption in these mod- 
els is that the conductive spheres 
have been coated with an insulative 
material having a thickness of 50Ä. 
This means that the minimum spac- 
ing between spheres is 100Ä, and 
that the distribution of spacings 
among spheres is likely to be a mir- 
rored Gaussian distribution as shown 
in Figure 111-40. 

Figure 111-39 

Temperature pattern at 24/is with no statistical variation in 
particle gaps. 

Four different choices are made for the standard deviation of the Gaussian distribu- 
o o o o 

tion: 10A, 20A, 50A, and 100A. The resulting calculated power increases with 
increasing gap variability, yielding 7.1 MW, 7.3 MW, 7.9 MW, and 8.6 MW, 
respectively. The resulting temperature patterns are shown in Figures 111-41 through 
111-44. Note that the patterns of higher temperature appear to be increasingly 
organized in channels perpendicular to the electrodes as gap variability increases, a 
phenomenon which suggests increasing tendency to form dominant current paths. 
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Figure ffl-40 
Mirrored Gaussian distribution of particle gaps 
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Figure 111-41   Standard deviation = 10 A 

Figure 111-42 Standard deviation = 20 A 
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Figure IH-43 Standard deviation = 50 A 

Figure 111-44 Standard deviation = 100 A 
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SECTION III-5 

MODELLING DOMINANT PATH RESPONSE 
TO TRANSIENT OVERVOLTAGE 

III-5-1: NECESSARY CONDITIONS FOR DOMINANT PATH 
The last four test cases presented in Section III-4-8 (Figures 111-41 to 111-44) exhibit 
nonuniform heating as a result of statistical variability of the material. However, even 
though those examples seem to visually demonstrate both warmer regions and an 
alignment of these warmer regions normal to the electrodes, none of those examples 
exhibit dominant path failure. This is an important finding in that experimental test 
samples appear to fail in dominant path. 

The model requirements for dominant path seem to be satisfied. First, the material 
is unstable, with marked voltage gradient sensitivity as defined by the Nordheim- 
Fowler approximation derived in Sections II-1-9 and II-6-7 and repeated here: 

K 
a =  s— Ee E       E. „ -Ng^>EIE 

where, for the test cases, these parameters are used: 

KE = 6.4x io-7 A/V2 

PE = 6.3x 106 V/cm 
N= = 100 cm1 

g = 100 A = 10 ■6cm 

Second, the material is spatially varied with randomness approximating a mirrored 
Gaussian distribution of gaps between conducive particles. Four values of standard 
deviation for this distribution are modelled to simulate increasing variability among 
gaps, all without exhibiting dominant path. 

A third condition for dominant appears to be required. This assumption of a 
necessary third condition has led to an hypothesis: the related third condition for 
dominant path formation is a regenerative effect. That is, some mechanism must exist 
to impose higher local conductivity a as a result of higher current density /. Higher 
local conductivity in turn leads to higher current density which leads again to even 
higher conductivity, etc. The modified Nordheim-Fowler approximation might then 
be expressed 

o = _?*_*e-"'ß««/(/) 
(Ngf 
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where 

J = oE 

Candidates for the regenerative function/ (J) could be inductive effects or other 
mechanisms related to the electromagnetic problem alone, such as regenerative 
avalanche. Other candidates for regenerative function are temperature-related 
phenomena emerging from thermoelectric coupling. In the latter case, where some 
aspect of thermoelectric coupling provides the mechanism for regenerative effect, the 
Nordheim-Fowler approximation with would take the form 

K, 
a 

(Ng)2 
Ee Ng$EIE 

For the models that follow in this section, the regenerative effect is chosen to be 
temperature-dependent as in this last expression. Note that the two options are 
closely related, since temperature T relates to current density J by 

AT EJ 

pc„     pcD 

This relationship suggests that with temperature as the basis for regenerative effect 
the speed of response is gated by the values of pCp , thereby slowing the develop- 
ment of dominant path phenomena when compared to a similar function of/alone. 

25 ohms 

O-vVWV 
40 KV 

Copper 

Varistor 
Material 

The following models are chosen to test the hypothesis 
that regeneration is a requirement for dominant path. 
An overvoltage transient is simulated with 40KV 
applied at time t = 0 to one electrode through a 25 ohm 
resistor as shown in Figure 111-45. The other electrode 
is grounded. These models also employ the same finite 
element discretization used in previous models, having 
3111 nodes and 6000 elements as shown above in 
Figure 111-37. 

All models are calculated for the first 20us of the 
overvoltage transient only, using time steps of 100ns. 
This means that each model contains 200 discrete 
solutions in time. Each time step in turn typically 
requires between 200 and 500 iterations depending on Figure 111-45 
the severity of the nonlinear event occurring during a particular time step. This means 
that a typical 20(is model can involve up to 10,000 solutions of the system of 
equations containing 3111 nodes in voltage and temperature, or 6222 total unknowns. 

Copper 

~. E 

9 E 

o o 
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III-5-2: LINEAR REGENERATIVE MODELS 
In the first set of three models, the regenerative function is chosen to be 

f(T) = 1.0 + a(T-T.) 

where T = local instantaneous temperature 
Tj = local starting temperature 
a = linear slope of temperature effect 

for each element in the finite element domain, such that 

K 
a 

(e) 
(Ng) 

E E/^e
N^E

(h0 + a{T(A _r.)) 
2      (') (e) 

where the subscript (e) refers to a constant or average (in the case of temperature) 
value across a single element. The values for KE, ßE, N, and g retain the values listed 
above. 7) equals 0 and the standard deviation for spatial randomness equals 40Ä in all 
models. 

Temperature results are shown in Figures 111-46,111-47, and 111-48 for the a values 
of 0.001, 0.010, and 0.100, respectively. The scale used is 13 colors over a range of 
0°C to 500°C. Time step shown is at 20^s for all. 

■ ■ 

Figure ffl-46 
Linear Regenerative Model at 20us, a = 0.001 

III-5-3 



■ II 

Figure 111-47 
Linear Regenerative Model at 20ns, a = 0.010 

■ ■ 

Figure DI-48 
Linear Regenerative Model at 20ns, a = 0.100 
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Although there seems to be a clear tendency to organize warm areas into traces 
normal to the electrode surfaces, no dominant path phenomena are apparent. A typical 
voltage pattern at time 20us for the linear regenerative model, though relatively 
uneventful, is shown below in Figure 111-49 for comparison to models to follow. 
Voltages are plotted with 104 colors (8 repetitions of 13) over a range of 0 volts to 
6000 volts. Slight unevenness in voltage patterns can be attributed to material 
randomness. 

Figure 111-49 
Linear Regenerative Model at 20|is, a ~- ■0.010 

Figure 111-50 is a plot of transient potential across electrodes for all three linear 
regenerative models. There are several features of note. First, the voltages in all three 
cases start out somewhat higher in these models, given the randomness of the 
materials, than in materials that are mathematically pure. Second, increasing values 
of a produce increasing downward slopes of potential, as expected, because of the 
increased conductivity as the material temperature rises. Third, the anomalies in the 
curve for a = 0.100 are believed to be convergence problems in the calculations, to 
be discussed later in Subsection III-5-7. 

Power generation curves for these models are shown in Figure 1II-51. 

The most important result from these three models is the apparent total absence of 
dominant path phenomena. These three sets of conditions therefore represent cases 
of non-chaotic behavior. 
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Figure 111-50 
Linear Regenerative Models: Voltages 
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Figure 111-51 
Linear Regression Models: Power 
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III-5-3: EXPONENTIAL REGENERATIVE MODELS 
In the second set of models, the regenerative function is chosen to be 

f(T) = 1.0 +c «(T-r.) 

where T= local instantaneous temperature 
Tj - local starting temperature 
a = exponential multiplier of temperature effect 

for each element in the finite element domain, such that 

(NgY 

where the subscript (e) refers to a constant or average (in the case of temperature) 
value across a single element. The values for KE, ßE, N, and g retain the values listed 
above. Tt equals 0 and the standard deviation for spatial randomness equals 40Ä in all 
models. 

Temperature results are shown in Figures 111-52 for the case of a = 0.010. The 
temperature scale used is 13 colors over a range of 0°C to 500°C in order to provide 
consistency among temperature displays. Once again, evidence of dominant path 
failure is absent. 

Figure IH-52 
Exponential Regenerative Model at 20^ts, a = 0.010 
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In exponential regenerative function cases where a = 0.050 and a = 0.100, 
however, the character of the modelled results depart remarkably from those in the 
previous models. Dominant path conduction is clearly evident in the temperature plots 
of Figures 111-53 and 111-54 using the same temperature scale as before. 

Figure ffl-53 
Exponential Regenerative Model at 20us, a : 0.050 

Figure HI-54 
Exponential Regenerative Model at 20\is, a: 0.100 

III-5-8 



Figure m-55 t = 6\is 

Figure ffl-56  t = 8[is 

This sequence models the case 
where a = 0.05. Note that 13 col- 
ors are used to depict temperatures 
ranging from 0°C to 700°C, a 
range chosen to show this time 
sequence to full effect. Maximum 
temperature predicted by the model 
at 20us exceeds 1000°C. 

An intriguing aspect of 
dominant path as modelled 
is the manner in which the 
phenomenon develops over 
time. The following Figures 
III-55 through 111-57 com- 
prise a sequence of temper- 
ature "snapshots" at 2|is 
intervals to show the tran- 
sient formation of chaotic 
dominant path failure. 

Figure m-57  t= lOfis 
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The transient voltage patterns for this model change abruptly as dominant path is 
achieved. Note the difference between the 8us voltage pattern shown in Figure 111-58, 
at the beginning of dominant path formation, and the 18(is voltage pattern shown in 
Figure 111-59, when dominant path is more fully developed. The latter pattern may be 
considered true evidence of chaos. Voltages are once again plotted with 104 colors 
(8 repetitions of 13) over a range of 0 volts to 6000 volts. 

Figure 111-58 
Exponential Regenerative Model at 8|as, a = 0.050 

Figure IH-59 
Exponential Regenerative Model at 18ns, a = 0.050 
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Figure 111-60 shows graphs of transient voltage response for the three exponential 
regenerative models shown above, with a equal to 0.01, 0.05, and 0.10. The gentle 
downward slope in the first curve is a relatively quiet response to the material Joule 
heating in combination with the exponential regenerative function linking electrical 
conductivity to temperature. The much sharper sudden drop in voltage in each of the 
other two models is coincident with the dominant path phenomena shown in the 
temperature patterns of the above figures. 

Note that the time necessary for dominant path to form correlates negatively with the 
value of a. 

This graph invites the interpretation that for dominant path to occur, it is insufficient 
for the material to be extremely sensitive to voltage gradient, possess spatial 
randomness, and exhibit regenerative behavior as an exponential function. That 
function, if it is in the form shown, must also have an exponential multiplier a greater 
than 0.010. 

Temperature Regeneration Function 
f(T) = 1.0 + EXP [alpha (Ti - T)] 

Transient Potential Across Electrodes 

5 10 15 
Microseconds 

Figure IH-60 
Exponential Regenerative Models:   Voltage 
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As a check to be sure that material randomness is required for dominant path failure, 
the case of a = 0.05 was modeled without randomness. Temperature results are 
shown in Figure 111-61. A comparison with the model having randomness is shown 
graphically in Figure 62. 

■ 

Figure ffl-61 

Temperature Regeneration Function 
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III-5-4: QUENCHING DOMINANT PATH PHENOMENA 
Once it has been shown that modelling of dominant path phenomena is possible, the 
resulting models beg an immediate question: how might the dominant path failure 
be prevented? What property can be introduced into the material to provide 
robustness in the face of voltage gradient sensitivity, spatial randomness, extreme 
regenerative effects, and overvoltage threats? 

Any such "magic property" must allow for voltage gradient sensitivity such that the 
resulting material is effective in a varistor device. However, while permitting voltage 
sensitivity, the material must also resist local current concentration (high local /). 
Given the speed of the events, it is unlikely that a mechanism that responds to an 
impending high /could react in time to "quench" the phenomenon. This means that 
the mechanism would have to be an inherent property of the material itself. 

One hypothesis is that a simple linear bulk resistivity, if it could be introduced into 
the material, could serve to limit local current concentrations. There are at least two 
major tasks required to implement this potential solution. First, it is necessary to 
discover the proper value of this hypothetical linear resistivity. If the value is too 
high, the device constructed from it will behave as a simple linear resistor. If the 
value is too low, dominant path will not be denied. Second, it is necessary to find a 
mechanism for implementing this linear resistivity. Since binder materials and 
organic or inorganic resistive coatings are designed for purposes of quantum 
tunnelling and can be vulnerable to avalanche or other regenerative phenomena, 
manipulating their properties is unlikely to be effective in attaining a stable linear 
bulk resistivity. The conductive phase, the conductive particles themselves, must be 
the focus of development with this regard. Departing from metal spheres and 
substituting metal-coated ceramics appears to have the most promise for constructs 
of the conductive phase. Details are addressed elsewhere in this report. 

Given that means can be found to impart linear bulk resistivity for thwarting 
dominant path phenomena, it remains to find a proper resistive value. The following 
models test the bulk resistivity hypothesis and examine a range of these values. 

When adding a bulk resistivity pb to the material construct, the expression for 
electrical conductivity takes the form 

°w 

K 
^E(e)e-NgV',E(l.O +c

a<r<«>-r-->) 
[(Ng?    W 

+ PA 

III-5-13 



Three values of pb are chosen for the models that follow: 0.001Q-cm, 10.0Q-cm, and 
0.100Q-cm. Temperature results are shown in Figures 111-63 through 111-65. It is 
interesting to note that these three values bracket the desired value for pb. 

A value of 0.00lQ-cm for pb does not prevent dominant path. Figure 111-63 
thoroughly underscores this statement in dramatic fashion. 

A value of 10.0Q-cm does prevent dominant path, as shown clearly in Figure 111-64, 
but the modelled device behaves as a simple linear resistor, resulting in a nearly 
constant voltage across the electrodes of nearly 12,000 volts! Clearly neither choice 
is acceptable as a material for a varistor device. 

However, the value of 0.1 Q-cm appears to stop dominant path from forming while 
not interfering with the intended sensitivity to voltage gradient. The Temperature 
patterns shown in Figure 111-65 help to convey an important finding. At this value of 
linear bulk resistance, temperature anomalies arising from the material spatial 
randomness are clearly visible. The implication is that the proper value of linear 
resistivity does not prevent temperature anomalies from forming, but it does prevent 
these anomalies from coalescing into continuous channels of dominant path. 

In these models, two principles have been demonstrated: that dominant path can be 
avoided with linear bulk resistivity, and that an ideal range exists for linear bulk 
resistivity that provides optimum performance. 

Figure m-63 
Exponential Regenerative Model at 20us, a: 0.050, pb = .001Q-cm 
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Figure 111-64 
Exponential Regenerative model at 20ns, a : 0.050, pb= 10.00 Q-cm 

Figure HI-65 
Exponential Regenerative model at 20ns, a : 0.050, pb = 0.100 Q-cm 
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Figure 111-66 shows graphs of transient voltages across electrodes for these three 
models. Figure 111-67 shows power generated in the modelled device vs. time. Note 
that at the highest linear resistivity the power exceeds 13 megawatts. 
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Figure 111-66 
Exponential regenerative models using three values of linear bulk resistivity 

to quench dominant path formation, a = 0.050 : Voltages 
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Figure 111-67 
Exponential regenerative models with linear bulk resistivity : Power 
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III-5-5: EFFECT OF GEOMETRY ON DOMINANT PATH PHENOMENA 
Open questions relate to curvilinear geometries and their effect on dominant path: 
would a cylindrical construction for a varistor device, with its inherent logarithmic 
relationship of voltage vs. radius, give superior performance by increasing the 
voltage gradient threshold for dominant path failure? Conversely, would the higher 
current density closer to the center of a cylinder exacerbate the problem? Answers 
to these questions have obvious impact on varistor design. 

7.5 KV 

Several models were run to compare flat and cylindrical constructs in order to 
provide preliminary answers to these questions. The general form of the cylindrical 
models is shown in Figure 111-68. Two cylindrical models employ the voltage and 
ballast resistance shown, but with differ- 
ent inner and outer radii of the varistor 
material. Cylinder No. 1 has varistor 
material inner and outer radii of 4.0mm 
and 5.0mm, while cylinder No. 2 has 
radii of 2.02mm and 4.0mm, respec- 
tively. These radii are chosen to simulate 
the volume of a 1.0mm flat construction, 
also modelled for comparison. Depth of 
all models is 1.0cm. In all cases the elec- 
trode thicknesses are consistent at 1.0 
mm. 7.5KV is applied at time zero to one 
electrode through a ballast resistor of 400 
ohms; the other electrode is grounded. 

Copper 
Electrode 

Varistor 
Material 

Figure 111-68 
Cylindrical Models 

The material used in these models is identical to that used in Section III-5-3, with 
statistical material variability, and where alpha in the exponential regenerative 
function is chosen to have a value of 0.05. This material has already demonstrated 
dominant path failure in the models depicted in that section. The models here are 
expected to demonstrate the influence of cylindrical geometry on the onset of 
dominant path. 

Results of these models are shown in Figures 111-69 through 111-71 as one-quarter 
constructs, which reduced computation time. Note that all three exhibit dominant 
path failure in these temperature maps at lO.Ous after voltage application. 

Plots of voltage response are shown overlapped in Figure 111-72. This figure 
demonstrates the most important preliminary finding: judging by the time to onset 
of dominant path, when voltage across electrodes begins to drop, one may conclude 
that cylindrical designs do not help to alleviate the dominant path problem. 
Cylindrical constructs may even exacerbate the problem as curvature increases. Note 
that these findings are extremely preliminary and need to be verified with extensive 
models and laboratory trials. 
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Figure 111-69 
Cylindrical Model No. 1 at lOfis, r( = 4.0 mm, r0 = 5.0 mm 

Figure 111-70 
Cylindrical Model No. 2 at lO^s, r; = 2.02 mm, ro = 4.0 mm 
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Figure HI-71 
Flat Model at lO^is, Thickness = 1.0 mm 
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III-5-6: EFFECT OF DEVICE THICKNESS ON DOMINANT PATH 
Another question relates to device thickness in the plane normal to the electrodes: are 
thinner devices more susceptible to dominant path failure than thicker devices? 

Models were run to simulate the effect of thickness changes. The three thicknesses 
employed are 5.0mm, 2.0mm, and 1.0mm Applied voltages and ballast resistances are 
altered to keep the applied field constant. The applied field is also consistent with the 
40KV applied through 25 ohms as used in the 1cm cube models reported in previous 
sections. Again the varistor material is chosen to be identical to the one used in 
Section III-5-5, a material which has already demonstrated a tendency to exhibit 
dominant path failure at this applied field strength. The models here are expected to 
demonstrate the influence of thickness on the onset of dominant path. 

Results are shown in Figure 111-73 as superimposed plots of voltage across electrodes 
vs. Time. Differences between results for models having the same input values are a 
result of the subtle differences imparted from different random number seeds used in 
generating material randomness. 

These models demonstrate another important preliminary result, evident in this figure: 
judging by the time to onset of dominant path, one may conclude that thickness has 
little bearing on performance down to a threshold thickness of about one millimeter. 
Below this threshold, device thickness is an important design consideration. This 
result is consistent with intuition regarding the lower number of conductive particles 
between electrodes and the implied statistical influence in thinner devices. 

Transient Potential Across Electrodes 

Sample Thickness Comparison 

2      4      6      8     10    12    14    16    18    20 
Microseconds 

Figure 111-73 
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III-5-7: SOURCES OF ERROR AND PROPOSED SOLUTIONS 
The noise in the voltage plots of Figure 111-60 and elsewhere are likely to be caused 
by difficulties of convergence in the program performing the calculations. At least 
part of the convergence difficulty stems from the size of the time step. Although the 
time step of 100ns might appear at first glance to be sufficiently small, it may still 
be too large to handle the rapid transient behavior occurring throughout the solution 
domain. 

Too broad a time step in the face of rapid transient phenomena can have a negative 
impact on the finite element method itself, especially when the functions chosen to 
represent the field variables within the element are of low order. In the case of the 
linear first-order elements used in these models, the mathematical difficulty can be 
defined graphically in a simplistic way, as shown in the following two figures. Figure 

r 111-74  shows a hypothetical finite 
I element first-order triangle on an X -Y 
I plane with temperature T used for the 

third dimension. All nodes are at 0°C. 

Figure 111-75 shows the triangle after 
a sudden transient event. In this in- 

| stance it is possible that the sudden 
rise in temperatures in two of the 

f nodes, in combination with the inher- 
I ent thermal capacitance inertia, can 

drive the third node to a negative 
value, even though only positive ther- 
mal energy has been applied. 

Figure 111-74 | 

The solution to this calculation prob- I 
lern is twofold: to decrease the time I 
step and to reformulate the software j 
with higher-order elements, which | 
will effectively "bend" in the situa- | 
tion shown in Figure 111-75. 

Decreasing the time step by itself) 
will result in prohibitively long run | 
times, which already exceed 12 j 
hours. Changing to higher order ele- j 
merits is appropriate as full 3-D prob- ! 
lems are addressed in Phase II of the 5 

project. 
Figure 111-75 
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SECTION III-6 

IMPACT OF THE NEW MODELLING TECHNIQUES 

III-6-1: DESIGNING VARISTOR MATERIALS THROUGH MODELLING 
The models shown above clearly demonstrate the ability to predict chaotic dominant 
path phenomena and, much more importantly, how to use these modelling techniques 
to create robust materials that maintain their desired voltage gradient sensitivity 
while avoiding dominant path formation entirely. 

The search for new material constructs using these techniques will depart signifi- 
cantly from tradition in both material science and finite elements. The models contain 
randomness. Therefore it is not possible to know precisely where and how a material 
will fail with one model alone. Many models of the very same conditions need to be 
run, with only different seeds for the pseudo-random number generators.1 The 
information to be discovered involves the nature of material performance and failure 
modes. Such an endeavor will keep computers busy. By contrast, creating material 
with no randomness whatsoever, material having perfect mathematical purity as 
defined in traditional models, is clearly impossible and foolish to attempt. 

III-6-2: BEYOND VARISTOR DEVICES 
The impact of this modelling technique extends far beyond varistor devices. There 
are quite possibly immediate applications in these fields: 

• Superconductivity 

• Nuclear hardening 

• Crack propagation and crack initiation 

• Transdermal iontophoresis drug delivery systems 

• Semiconductors and integrated circuits 

The above list is not intended to be complete. The techniques apply to any system 
containing materials which are not perfect. Since that set of materials includes 
virtually all those known, it is better to describe the systems for which these 
modelling techniques are essential: those in which material imperfection results in 
significant and otherwise unpredictable modes of behavior. The list of such systems 
is still very large indeed. 

i 
In the above models, random number seeds came from the computer time of day clock in milliseconds. 
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Section IV-1 

MATERIAL FABRICATION 

IV-1-1  General Considerations 
The object of this work was to prepare conductive particles in a resin matrix 
between electrodes supplied by Integrated Sciences. The goal was to keep 
the conductive particles separated by coating the particles with a 
nonconductor. The target separation between the spheres was originally 
expected to be on the order of 100 angstra. At this separation it was 
anticipated that the dominant electrical conductance would be by tunneling 
through the insulative layers between the conductive particles. 

At the start of this work, exploratory experiments were carried out with 50 
micron hollow ceramic spheres (cenospheres) which were coated with 600 
angstra of pure silver metal and then further coated with approximately 
2000 angstroms of highly cross-lined acrylic polymer. Mixtures of these 
insulated conductive spheres were mixed with various binders at volume 
loadings between 35 and 50 percent. 

The electrodes supplied by Integrated Sciences have a conductive surface on 
each face with a diameter of 15 mm. Therefore each electrode face has a 
surface area of 176.7 mm2. If the electrodes are spaced at a 1 mm distance, 
the volume between the electrodes is 176.7 mm3. For monodisperse spheres 
having diameters of 50 microns packed in a cubic lattice, one cubic 
millimeter will contain 8,000 spheres. Therefore, each electrode at a 
spacing of 1 mm will contain approximately 1.4 million spheres between 
the faces. 

Since the spheres we are utilizing are not monodisperse, but have a 
Gaussian size distribution peaking near 50 microns, and the packing is not 
cubic, but is somewhat random, these calculations only give an 
approximation of the number of spheres between the faces. The theoretical 
packing for monodisperse spheres is near 73 volume percent. This 
percentage cannot be reached practically. The theoretical maximum 
volume loading for non-monodisperse spheres is near 55 volume percent. 

The actual volume loading that can be obtained in a trowelable paste is 
dependent on the particle size. The binder must completely wet the surface 
of each particle in a trowelable paste. As the particle size decreases, the 
surface area of a given weight of powder increases tremendously. The 
volume loading limit of material that can be put in a trowelable past is 
limited by the surface area of the particles. If insufficient binder is 
available to completely wet the particle surfaces, the material becomes 
crumbly and cannot flow between the electrode faces. 
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IV-1-2  Binder Trials With Organic Coatings 
The first binder tested was 100% solid epoxy resin. The resultant material 
consistently gave a DC resistivity between the electrodes of less than 0.5 
ohms. This measurement indicated that the acrylic film was being 
distorted sufficiently to allow the metallized spheres to make ohmic contact. 
It was known that these acrylic coated spheres in a solvent and binder 
could be sprayed like a conventional paint to yield nonconductive films 
which were 10 to 30 mils thick when dry. 

To determine if the epoxy were somehow responsible for the degradation of 
the acrylic film, other binders were tested including water soluble silicates, 
thermoplastic rubber, molten wax, and other acrylic polymers. All of these 
binder/metallized sphere matrices consistently give high DC conductivity 
with resistance measurements between the electrodes of below 0.5 ohms. 

By connecting the digital multimeter to the electrodes before the 
binder/sphere mixture was pressed between the electrodes, it was possible 
to observe that the original mixture had no apparent DC conductivity until 
it was pressed between the faces of the electrodes. With many of the 
mixtures, it was possible to pull the electrodes apart slightly and achieve a 
very high resistance, and then with very light pressure to watch the 
conductivity increase until the resistance was only a few tenths of an ohm. 

These experiments indicated that at the loadings utilized in the binder, the 
spheres would form a bridge structure between the electrodes as they were 
pressed together which would"punch through" the thin acrylic layer on the 
surface of the spheres. Various binders tested demonstrated that those 
which tended to soften the acrylic layer were much more prone to form a 
conductive bridge between the electrodes. As an example, an acrylic resin 
in a solution of MEK/toluene would form a conductive path with much less 
pressure than was observed in the case of the water based sodium silicate 
solutions. In both cases, it was practically impossible to squeeze the 
mixture between the electrodes without creating a conductive path. 

In an attempt to avoid the softening of the acrylic, which is generally 
caused by low molecular weight polymer or solvents slowly diffusing into 
the acrylic film, a very fast curing cyanoacrylate was used as a binder. It 
was hoped that this fast curing system would not have sufficient time to 
attack the acrylic before curing to a solid. Gel times could be varied from a 
few seconds to several minutes. It was found that this faster curing 
material did yield nonconductive cured matrices between the electrodes. 
Initial tests of these electrode/matrices at Integrated Sciences indicated 
that these mixtures showed some promise, but it was felt that the 2000 
angstrom acrylic coating on the spheres was too thick to allow tunneling 
between the spheres. 

In an attempt to generate an insulative layer on the order of 100 angstroms, 
a thin film of monomer was deposited on the beads as a near 
monomolecular layer by Langmuir techniques.  This material was tested in 
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the cyanoacrylate binders with variable results. At thicknesses on the 
order of 1 molecule, the physical resistance of such thin films to "punch 
through" is very low. Many attempts were made to adjust the technique of 
placing the mixtures between the electrodes which would yield no DC 
conductive paths. The results of these attempts were poor in general, and 
this direction was abandoned. 

Experiments were also performed using 50 micron cenospheres coated with 
nickel and Permalloy 60/40. These materials consistently showed high 
conductivities between the electrode faces and were, in general, more 
sensitive to slight pressure between the electrodes. The surface of these 
materials was known to be rougher than spheres coated with silver. It 
appears that this surface roughness enhances the ability to form ohmic 
contacts between the spherical particles as the requirement to squeeze 
binder from the interface is decreased by the projecting metal from the 
rough surface. These spheres appear to the eye to be quite smooth, and 
even under a microscope at 40X appear fairly smooth, but SEM photographs 
demonstrate that the surface is quite rough at the 100 angstrom level. 

The previous experiments were carried out with conductive particles 
having diameters near 50 microns. If the electrodes were at a 1 mm 
spacing, only about 20 spheres were needed to bridge the electrode faces and 
create a conductive DC path. Smaller diameter bead would be expected to 
have a lower probability of creating a conductive path as the number that 
must be in a continuous chain is greater. Silver spheres with diameters of 
12 and 15 microns were tried with epoxy, acrylic, and cyanoacrylates. 
These tests resulted in performance as poor as was obtained with the larger 
spheres. It appears that the advantage of smaller spheres is offset by 
having more potential paths between the electrode faces. 

IV-1-3  Inorganic Coating/Silver Sulfide 
The results of the above experiments indicated that the insulative layer 
needs to have a strong physical integrity to avoid "punch through" when 
the conductive sphere/resin mix is placed between the electrodes and 
pressed to the desired thickness. It was felt that there were no organic 
polymers which would have this degree of physical strength. Techniques 
were available to simply react a silver coated sphere with other materials to 
generate a very thin silver compound on the surface of the spheres which 
would perform as an insulator. These inorganic films can be controlled 
with acceptable accuracy and also have an extremely good bond to the 
surface. It was felt that as two spheres were squeezed together that these 
inorganic films would not be squeezed out of the interface on the sphere 
surfaces as readily as an organic polymer. 

Spherical particles were coated with silver metal at a nominal thickness of 
600 angstra. This material was subsequently reacted with sulfur to 
produce different thickness layers of silver sulfide as insulative layers over 
the metallic silver.   All of the samples prepared by this technique gave 
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unexpectedly high DC conductivity when placed between the electrodes. 
This high conductivity was ultimately traced to the fact that silver sulfide is 
a poor insulator and allows appreciable DC conductivity through the silver 
sulfide layer. 

IV-1-4   Inorganic Coating: Aluminum/Aluminum Oxide 
Aluminum oxide was known to be a very good insulator, and further work 
was directed toward particles of aluminum having an aluminum oxide 
coating of various thicknesses on their surfaces. "Spherical" aluminum 
particles were obtained and techniques were devised to oxidize these in a 
controllable manner. Samples prepared by these methods demonstrated 
that aluminum oxide is indeed a very good insulator and ohmic 
conductivity for these materials between the electrodes was in the giga-ohm 
range. 

These materials gave variable results; however, clamping was observed in 
samples with the thicker oxide coatings. IS determined that the oxide layer 
was more than 3000 angstroms thick. This presented a puzzle, as this is 
much thicker than predicted for electron tunneling. Examination of the 
"spherical" aluminum particles indicated that a large proportion were not 
spherical and can best be described as "acicular bloblets". It was reasoned 
that the more pointed areas of these bloblets created a concentration of 
electrical field which could cause electron tunneling through the thicker 
oxide layers. 

The acicular nature of these powders tended to give nonreproducible results 
when a sample of the same material was prepared and retested. This was 
thought to be caused by the random nature of the distribution of the acicular 
particles. However, three samples were prepared from this powder with 
similar, if not exact, characteristics. The samples were subsequently tested 
according to ESD specifications and all three performed well.1 

IV-1-5   Glass/Nickel/Nickel Oxide 
In order to obtain more spherical particles, samples of 55 micron solid 
glass spheres were obtained. These were coated with approximately 3337 
angstra of nickel metal. A portion of the nickel on the surface was oxidized 
to yield approximately 100 angstra of nickel oxide. This material 
consistently failed by a dominant path mechanism. Examination of the 
glass demonstrated that a fair amount of acicular glass particles were 
present. These acicular particles when coated with nickel and 
subsequently oxidized, demonstrated dominant path failure consistently. A 
method was developed to remove some of the acicular particles from the 
material with 100 angstroms of nickel oxide on the surface. These samples 
also failed by a dominant path mode. 

1C.f., Subsection V-2-6. 
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A second set of nickel coated glass spheres also having approximately 3337 
angstroms nickel were prepared and oxidized more vigorously to yield a 
thicker oxide coating. This sample was also divided and a portion of the 
acicular particles were removed from half of the sample. IS reported that 
the material with the acicular particles partially removed was showing 
interesting clamping behavior. As noted in the earlier samples, the non- 
spherical nature of some of the glass starting material would cause field 
hot spots requiring a thicker nickel oxide layer to avoid immediate 
dominant path failure. SDS is currently attempting to obtain samples of 
glass spheres with fewer nonspherical particles and perhaps all near- 
spherical particles. 

There are two positive aspects of the tests made on the last powder. Definite 
clamping action was observed, but more importantly, examination of the 
electrodes showed that the failure paths were spread over a much larger 
area of the electrode surfaces, probably attributable to the higher uniformity 
of this powder compared to others.2 

IV-1-6   Glass/Nickel/Glass 
We next coated glass spheres with nickel and then overcoated with glass. 
The results are given in Section V and are quite encouraging. Consistent 
clamping action is obtained with no failures. It is anticipated that 
glass/metal/glass will be one of the mainstays of our materials. 

IV-1-7  Cenospheres/Silver Islands 
The difficulty in obtaining near spherical substrates prompted a different 
approach. SDS prepared hollow ceramic microballoons (cenospheres) with 
silver islands of various sizes and distributions on their surface. This tends 
to avoid the high field concentrations that can occur on acicular particles. 
Tunnelling in these particles would be between the islands on the surface of 
the sphere. 

A range of various silver amounts on the surface of the particles was 
supplied to IS along with some uncoated cenospheres. The uncoated 
cenospheres may be mixed in a small amount with the silver coated 
cenospheres to disrupt any electrically conductive chains between the 
electrode faces. SDS experience with these chain disrupters in other areas 
demonstrated that this is an effective method of destroying conductivity in 
these mixtures. 

This particular approach is still in the speculative stage, but should be 
given further consideration in Phase II. 

2C.f., Subsection V-2-7. 
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IV-1-8  Closing Comments 
Particularly in the face of the apparent unavailability of truly spherical and 
uniform metal powders, it appears the path for future success will be in the 
direction of metal coated insulators overcoated with an insulative layer. 

IV-l-6 



SECTION IV-2 

TEST CELL DESIGN 

IV-2-1  Design Criteria 
The main criterion for our test cells was simplicity of geometry so that no 
extraneous factors would be introduced into the physics of our observations. 
Beyond that, ease of manufacture and handling were considerations. This 
led to the simple design depicted in Figure IV-2-1. 

Electrode 

^ 8llllllllllti$Ä ^ 

Outer Ring Electrode Fringe Guard 

Fig. IV-2-1 Test Cell crossectional view. The Test Cell is cylindrical in shape. The outer 
ring and the fringe guard are made of the same insulative material. The electrodes are 
copper. All contacting components are press fits with respect to one another. The function 
of the fringe guard is the prevention of arcing at the outer edges of the electrodes. 

The samples are labelled and the thickness from lower to upper electrode 
calipered. The electrode thicknesses are measured previously, so the latter 
measurement gives the interelectrode spacing. 



SECTION V-l 

TEST METHODOLOGY 

V-l-1  Critique of Previous Measurement Methods 
A number of companies have made attempts at producing quantum 
tunnelling varistor devices. For various reasons, some quite mysterious, 
corporate managers have elected not to take a sound scientific approach. 
This is particularly evident with regard to the testing methods used. The 
devices are intended to protect against high voltage transient threats and it 
immediately occurs to one that high voltage pulsing would be the 
appropriate method of testing. Several companies have bought expensive 
high voltage pulsers meeting a number of current waveform specifications. 

What they learned from this was that they could destroy their samples and 
not meet the specifications. This type of testing tells you nothing concern- 
ing device physics, does not lead to an understanding of the mechanisms 
involved, nor indicate a path for improvement. Finding the path to im- 
provement is required for success, and we believe careful analysis of the 
physical mechanisms involved, coupled with appropriate measurements, 
is the key to finding the path. 

V-l-2 Previous Efforts by Integrated Sciences™ 
In the work performed by Integrated Sciences™ for the U. S. Army cited in 
the foregoing sections, a start was made toward the careful analysis. 
Although all contract obligations were met, the funding level did not allow 
for the completion of the analyses nor a definitive testing program. 

Major Army concerns were varistor leading edge responses and the ability 
to absorb repeated EMP pulses. These were successfully demonstrated by 
the Army at their Harry Diamond Laboratory. Thus the leading edge 
response is not a major concern of the present effort. Our focus will be on 
testing that reveals the device physics, particularly as it relates to device 
reliability and energy handling capabilities. In Phase II, it is planned to 
acquire sufficient instrumentation to both observe the leading edge 
responses and device microwave properties. 

The planned parameters to be measured in Phase I were low current I-V 
characteristic, reverse standoff voltage, clamp voltage, and device destruct 
energy. The planned measurement methods will be described in the 
following subsections. We say "planned" because experience dictated a 
different path as will be described in the section on test results. 
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V-l-3 Low Current I-V Characteristic and Reverse Standoff Voltage 
In a varistor device such as a Zener, the transition from a low conducting to 
a high conducting state is accompanied by a change in the conduction 
mechanism. This gives rise to an apparent discontinuity in the Zener I-V 
characteristic. In pure quantum tunnelling varistors, the conduction 
mechanism is always the same. The low conducting to high conducting 
transition is strictly continuous; although, in a circuit application, the 
transition may appear discontinuous because of the high degree of 
quantum tunnelling nonlinearity. 

The quantum tunnelling nonlinearity is most pronounced in the region of 
the low conducting to high conducting transition. It is this low current 
region that most clearly delineates the conduction mechanisms involved. 
In some past devices that were presumed to be quantum tunnelling devices, 
it is not at all clear that the dominant conduction mechanism was pure 
quantum tunnelling. The low current I-V measurements serve to resolve 
this. Measurements will be made with an electrometer (Keithley 6517). 
The reverse standoff voltage is read directly from the low voltage I-V 
characteristic. 

V-l-4  Clamp Voltage and Energy to Destruct 
The clamp voltage is the voltage across a varistor at maximum peak 
current. A direct current of this magnitude would certainly destroy the 
varistor. Thus it is necessary to determine clamp voltage with a pulse 
method. We use a simple capacitive discharge to accomplish this. A 
schematic of the circuit is shown in Figure V-l-1. 
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Fig. V-l-1 Schematic of circuit used to determine clamp voltage. The resistors on the far 
left are used for current limiting during the capacitor charging process. The two resistors 
on the far right constitute a voltage divider for protection of the scope input. The vertical 50 
Q resistor is used to determine the fixture characteristics and is removed for clamp voltage 
determination. The maximum peak output voltage is 1.6 kV. 
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An output voltage of L6 kV is sufficient to determine the clamp voltages, but 
we do not have the capability of supplying anywhere near the theoretical 
destruct energies. To this end, we use the pulse capabilities of Hyger 
Physics, Inc. located in Camarillo, California. Their capability is up to 1 
kJ, 10 kV, 10 kA, with an 8 x 20 pulse. With four 1 fxF capacitors in series, 
each charged to 400 V, our system is capable of delivering only 320 mJ. 

A schematic representation of the test fixture is shown in Figure V-l-2. 

Binding Post 

Binding Posts Test Cell 

Fig. V-l-2 Test Fixture Designed to accommodate the test cells. The base is insulator. 
The all black parts are metallic. The test cell is electrically contacted and it is easy to 
change from one test cell to another. 

V-l-5  Quantum Tunnelling Signature 
In the results of the testing, we will be looking for characteristics indicating 
quantum tunnelling. In Subsection II-1-11 we had for device current the 
expression 

I = KvV
2e-ßv/v 

for the resistance of the device this may be written as 
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R = 
eßv/v 

KVV 

Matching this function at two different voltages gives the inversion 
relations 

lnK=- -ln 
( \ 

\R2V2j 

1,(     1 -—In 
W. 

1    f RV^ 
A    {R2V2J 

where 

VV V2 V1 

For comparisons, we will usually match laboratory data with these 
relations at the end points of the data. 

V-l-6 Test Procedure 
The parallel resistance of the test fixture was first measured at 1 kV and 
found to be greater than 200 TQ, thus the effect of test fixture leakage is 
expected to be negligible. 

The following test procedure was planned: 

1. Determine resistance at 1.5 V with an ohm meter. Any sample 
with a resistance below 1 MQ was rejected and no further tests made. 

2. Using a Keithley 6517 electrometer, the power delivered to the 
devices was measured in increments of 10 V. When the power level 
reached 0.1 W, this step of the testing process was terminated. Any 
devices shorting during this test were rejected. 

2. Over the range of voltages determined in the previous test, 
resistances of surviving devices are measured as a function of applied 
voltage. 

3. Samples surviving the above two tests are then pulse tested as 
previously described to determine clamp voltage. 

4. Surving samples are then sent to Hyger Physics, Inc. for 
determination of energy to de struct. 

V-l-7 Test Procedure Verification 
Before testing of our samples, steps 1 - 3 of the above procedure were verified 
using a commercially available MOV as the device under test (AVX TVS 
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056 042).  The results of the electrometer tests are plotted in Figure V-l-4 
along with the quantum tunnelling curve as derived in the last section. 

C/3 

E 
XI 
Q 
o 

Applied Potential/V 

Fig. V-l-4 The solid curve is the measured resistance of a commercial MOV varistor. The 
dashed curve is the quantum tunnelling function matched at end points of the measured 
data. 

From this plot it is evident that MOV's are not quantum tunnelling 
devices.1 

The clamp voltage of this device was tested in 200 V increments from 400 V 
to 1.6 kV with a 50 Q source and 50 Q load. The clamp voltage was steady 
between 14 and 15 V. A repeat of the electrometer readings showed no 
appreciable change from the curve of Figure V-l-4. 

JWe do envy their the downward concavity. 
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SUMMARY OF TEST RESULTS 

V-2-1 Revised Test Procedure 
In the previous section, we described what we thought would be the ideal 
testing scenario prior to making the first measurement. Another title for 
this subsection might be, "Welcome to the Real World." The current 
procedure is relatively simple, and we believe it gives us the most 
information for time and samples spent. We outline it as follows: 

1. Determine the clamp voltage starting at a low applied pulse 
voltage and moving up. 

2. Determine the reverse leakage current with the 
electrometer with the reverse standoff voltage defined as 
half the clamp voltage. 

3. Determine the destruct energy by continuing the applied 
pulse tests beyond the clamp voltage. 

This sequence gives us all the essential electrical information for a given 
sample prior to the time the sample fails. 

V-2-2  The Quantum Tunnelling Signature 
Many of the test results are described in Part IV and will not be repeated 
here. We will concentrate on those aspects having the most likely impact 
on future development One of our major goals was to produce materials 
clearly exhibiting the quantum tunnelling signature. Throughout all of 
our electrometer measurements, a disturbing factor emerged. At constant 
applied voltage, the resistance readings would start at some lower value 
and increase as a function of time, thus masking any quantum tunnelling 
signature that might be underlying the observed data. The time constants 
for these resistance increases were quite long, on the order of hours. To 
study these effects further requires a strip chart recorder or an automatic 
data acquisition system, one of which will be implemented in Phase II. We 
suspect the rising resistances are the result of space charge effects. 

At first, we thought these effects might portend a potential death knell. 
Upon further reflection, we realized that from a practical standpoint, our 
devices need only be of sufficiently high resistance throughout the 
operational mode and exhibit clamping action in the threat mode. 
Subsequently, devices with these characteristics were produced. 
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V-2-3 Conduction Mechanisms 
The working materials produced to date appear to require insulative 
barrier thicknesses outside the range expected for pure quantum 
tunnelling. Part of this may be caused by morphological irregularities of 
the base powders with an attendant field enhancement at positions with 
high radii of curvature. Alternatively, there may be other conduction 
mechanisms present under high field conditions, such as von Hippel or 
Fröhlich.  These possibilities will be considered in Phase II. 

V-2-4 Dominant Path Failure 
For the most part, samples that fail, do so through the dominant path 
mechanism. That is, a very small conductive path is created through the 
material. This is predicted by our computer simulations and is confirmed 
by observing the electrodes of failed samples. The electrodes show spots 
about the size of a period on this page and the spots on opposing electrodes 
are directly above one another, indicating a path straight through the 
material perpendicular to the electrodes. Computer modelling indicates 
two criteria for this situation to exist, positive feedback and statistical 
variation. Reducing either or both of these will aid in ameliorating the 
dominant path phenomenon. 

The statistical variations may not be as damaging as one might first expect. 
An aluminum powder, WG 20,1 has a high degree of statistical variation 
and does fail dominant path. However, the powder failure point is well 
within the bounds to make it a successful ESD arrestor. 

We have produced samples with greatly reduced statistical variation. 
When examining the electrodes of these samples, the pattern is in the form 
of clouds rather than a single point, backing up our contention that 
reduction in statistical variation reduces dominant path; this is also 
supported by computer simulation. 

As indicated in Part II, the addition of bulk resistance to our materials will 
reduce the positive feedback effects. This is accomplished by using 
insulative spheres with a conductive coating and overcoating with an 
insulative barrier. 

V-2-5 Binder Effects 
Another objective of this effort was the production of materials whose 
electrical properties were independent of the binder. A first step in the 
direction of demonstrating the feasibility of this approach was to show that 
powders with no binder exhibit the desirable properties, and this has been 
accomplished. Two associated electrical properties of desirable binders are 
either high dielectric strength or high electron transparency in ultra thin 

lrro be subsequently described. 
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films. The other binder properties are associated with the mixing process 
and mechanical integrity of the finnished product. 

In some of the organic binders tested, dominant path failure was evident, 
with the dominant path being formed by a carbon chain extracted from the 
binder. This effect wuld be ameliorated by high dielectric strengths or high 
electron transparency. 

V-2-6  Aluminum/Aluminum Oxide 
This powder consists of aluminum with nominal diameters of 20 am. It 
was coated with aluminum oxide to a depth of between 500 and 1000 A. 
Morphologically, this powder is a potential disaster. It has high statistical 
variability and a wide variety of shapes, some with points. With a 1 mm 
interelectrode spacing samples fail dominant path at about 100 mJ. With a 
2 mm spacing, no failure occurred at the highest level of our test system 
(211 mJ). 

Three test cells containing this powder were independently tested at 
Littelfuse, Inc. to determine if it would meet their ESD requirements. The 
tests were performed to IEC 801-2 specifications and were completely 
successful. The threat voltages ranged from 1 to 11 kV. Many pulses were 
applied and as measured by a DMM, the samples remained open. The 
clamp voltages were at 200 V. Upon returning to Tulsa, the off state 
resistances were measured with an electrometer at 100 V reverse standoff 
voltage with all three samples well in the GQ range. 

The resolution of the Littelfuse test system was 500 ps. Although less than 
other materials tested by Littelfuse, there appeared to be some leading edge 
overshoot. However, it was demonstrated that this same overshoot is 
present with a blank test cell, so is likely an artefact of the test set-up. This 
contention is backed up by measurements shown in Figures V-2-1 and 
V-2-2. 

The first is a sample labelled WG 22; the powder is WG 20. The applied 
voltage is 11 kV, with an apparent clamp at about 200 V. There appears to 
be a leading edge overshoot and the waveform is not particularly clean. 

The second is a plot of the measurement system response to a blank test 
cell, that is, one containing no varistor material with the electrodes pushed 
together forming a dead short. The applied voltage is the same as that of 
the previous plot. It is apparent that there is a high level of system 
parasitics, and there is a high degree of correlation between the two plots. 

If these two plots are superimposed and the parasitics visually subtracted, 
one would be led to believe the varistor material response is relatively clean, 
with no overshoot, and a clamp voltage of about 150 V. The likely reason for 
the lower initial spike with the varistor material present is that the digital 
sampling did not occur at the peak value. 
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Fig. V-2-1   Measurement with varistor material present. 
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Fig. V-2-2   Test system response to a blank test cell. 
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These tests are particularly interesting since there was no binder present, 
demonstrating the desired clamping characteristics independently of a 
binder. Subsequent to these tests, Littelfuse incorporated a powder of this 
type into a binder and produced a prototype device with essentially the same 
results previously obtained, demonstrating the results are still independent 
of the binder. This was a major goal of this effort, production of devices 
whose electrical properties are independent of the binder used. 

V-2-7   Glass/Nickel/Glass 
In this sample, glass spheres were coated with nickel and overcoated with 
glass. A sequence of oscilloscope traces are shown in Figures V-2-3 
through V-2-7. Of particular note is the absolute consistency of the clamp 
voltage at 200 V with an applied pulse of 8 kV. There is still an apparent 
leading edge overshoot and we still believe this is an artefact of the test 
system. This is supported by Figure V-2-5 which exhibits the characteristic 
of an LCR ringdown. 
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Fig. V-2-3 First pulse, 200 V/div., 8 kV applied. 

This sample exemplifies the Integrated Sciences™ three phase concept and 
demonstrates the concept has potential for production of useful devices. 
Additional traces will be found on the following two pages. 

V-2-5 



V-2   Summary of Test Results 
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Fig. V-2-4    Second pulse, 200 V/div., 8 kV applied. 
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Fig. V-2-5   Tenth pulse, 200 V/div., 8 kV applied. 
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V-2   Summary of Test Results 
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Fig. V-2-6   Fifteenth pulse, 200 V/div., 8 kV applied. 
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Fig. V-2-7   Twentyfifth pulse, 200 V/div., 8 kV applied. 

V-2-7 


